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Abstract—Social sensing plays an important role in crime
analytics and predictive policing. When humans play the role
of sensor, several issues around privacy and trust emerge that
must be carefully handled. We provide a framework for deploying
predictive crime models based upon crowd-sourced information
(crime reports, tips, Nextdoor posts, etc.) while protecting in-
dividual privacy and striving for a high level of algorithmic
transparency. For this purpose we introduce a novel online
Hawkes process estimation algorithm requiring no event history
coupled with an online k-means type algorithm based upon
the word movers distance. We illustrate the methodology using
synthetic data, crime report data from Los Angeles, and public
safety posts from Nextdoor in Indianapolis. In particular, we
show that privacy and transparency can be maintained without
sacrificing accuracy in space-time models of criminal incidents.
Furthermore, our methodology provides a framework for sharing
of information between private companies collecting crime tips
or public safety information, law enforcement agencies, and the
general public.

Index Terms—Social Sensing, Predictive Policing, Online
Hawkes Process, Topic Model, Word Movers Distance, Privacy

I. INTRODUCTION

Social sensing plays an important role in crime analytics
and predictive policing. For example, geolocated tweets are
predictive of future hit-and-run incidents [1], mobile phone
location data improves predictive models of crime hotspots
[2], and neural networks trained on Google street view images
can rank neighborhood crime levels based on the street level
image better than humans [3].

While these secondary sources (e.g. social media, IOT
sensors, etc.) may help to improve models of crime, human
reporting remains the best source of information on crime and
social disorder. Crime forecasts based upon calls-for-service
alone were top performing solutions in the 2017 NIJ crime
forecasting competition [4] and verified crime reports are the
main input to a majority of crime hotspot models used for
directing police patrols and interventions [5] [6]. Crime tips
are a valuable tool that police departments employ [7] and
more recently social networking platforms such as Nextdoor
have started to provide mechanisms for community members
to share information with law enforcement and each other.

When humans play the role of sensor, several issues around
privacy and trust emerge that must be carefully handled.
Communities have varying levels of trust in law enforcement
and under-reporting of crime can occur if community members
do not trust police to respond fairly and effectively. While a

small percentage of crime incident data is generated due to
police observation and arrests, the majority of data is collected
from citizen initiated reports where the reporter is a victim
or witness to a crime [8]. Mechanisms are put in place to
encourage reporting while protecting reporter privacy. For
example, crime tips are almost always anonymized and are
often deleted from databases after several weeks or months.
These issues are now arising in the private domain as well,
for example Nextdoor will forward public safety posts to law
enforcement only with the user’s permission and removes
social interactions and posts related to the original post.

The goal of this paper is to provide a framework for
deploying predictive crime models based upon crowd-sourced
information (crime reports, tips, Nextdoor posts, etc.) while
protecting individual privacy and striving for a high level of
algorithmic transparency. The latter condition is in response
to recent criticisms of algorithmic bias in predictive policing
models [9] and attempts to make predictive policing source
code open [10]. We provide a schematic for a privacy pre-
serving, crowd sourced crime model in Figure 1 similar to
the privacy preserving framework outlined in [11]. A real-
time crime model is maintained on a server, consisting of the
current spatial risk of each of several crime “topics” across
the city along with model parameters. When a user wishes to
make a crime report, the client side application checks out the
model from the server, the user’s post is categorized on the
client side, and the risk and model parameters are updated and
pushed back to the server. The risk model can also be checked
out by law enforcement for preventative patrols. Because the
model is updated on the client side, no direct user information
is pushed to the server and minimal user information (save for
the neighborhood and topic) may be inferred from the model
server.

The outline of the paper is as follows. In Section II,
we provide the details of our algorithm. In Section IIa, we
describe an online learning framework for space-time Hawkes
processes where no event history is required for updating
the intensity or its parameters. In Section IIb, we describe
an online k-means type algorithm utilizing the word movers
distance and word2vec to map crime report text to a topic. To
our knowledge this is the first online Hawkes process estima-
tion algorithm requiring no event history and the first online
algorithm for topic modeling with word movers distance. In
Section III, we exhibit several experiments using synthetic



data, crime report data from Los Angeles, and public safety
posts from Nextdoor. In particular, we show that privacy and
transparency can be maintained without sacrificing accuracy
in space-time models of criminal incidents. Furthermore, our
methodology provides a framework for sharing of information
between private companies collecting crime tips or public
safety information, law enforcement agencies, and the gen-
eral public. We end with a discussion of our findings and
suggestions for future directions in Section IV.
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Fig. 1: Schematic for a crowd-sourced crime model with
privacy.

II. PRIVACY PRESERVING, CROWD SOURCED HAWKES
PROCESS

A. Online learning of Hawkes processes without histories

We consider a Hawkes process defined on a spatial dis-
cretization G with spatial units g ∈ G,

λg(t) = µg +
∑
t>tj
gj=g

f(t− tj). (1)

In Equation 1, λg(t) is the intensity (rate) of events in spatial
unit g. The overall intensity is the superposition of a “back-
ground” rate µg , a Poisson process modeling spontaneous
events, and a “triggering” kernel f(t) that allows the overall
intensity to increase following recent events in the history of
the process in spatial unit g. The event times tj comprise the
history of the process, where gj is the grid cell in which event
j occurs.

For now we consider a single Hawkes process, but in
subsequent sections we will allow for multiple independent
Hawkes processes with intensities λlg(t) corresponding to
different topics l. The Hawkes process is used to model
crime patterns such as burglary [12] and retaliatory violence
[13] where offenders repeat criminal activity shortly following
recent crimes.

Model parameters can be learned from data by maximizing
the log-likelihood function,

L =
∑
g∈G

[
∑
i

gi=g

log(λg(ti))−
∫ T

0

λg(t)dt]. (2)

Because inter-event times ti − tj appear in the likelihood
function, typically it is necessary to store the history of event
times and locations for model training. Recently introduced
online methods for Hawkes processes [14] require only a
sliding history in a moving window, however we would like
to develop an online learning algorithm that runs on the client
side without any history storage on the server.

For this purpose we assume the triggering kernel f(t) can
be approximated by a fixed basis of exponential kernels,

f(t) =

K∑
k=1

θkωke
−ωkt. (3)

Here the parameters ωk set the decay timescale of each indi-
vidual exponential kernel and the θk are mixture parameters
setting the relative weight of each kernel. Because f(t) is a
Poisson process the θk need not sum to 1.

This choice of kernel in Equation 3 has several advantages.
By defining,

F g
k (t) =

∑
t>tj
gj=g

θkωke
−ωk(t−tj), (4)

we can then write the overall intensity as,

λg(t) = µg +

K∑
k=1

F g
k (t). (5)

This allows a sequential update for the intensity,

λg(t
−
i ) = µg +

K∑
k=1

e−ωk(ti−ti−1)F g
k (t

+
i−1), (6)

where t+ indicates the right-sided limit of F g
k . We therefore

only have to store µg , F g
k (t

+
i−1) and the time of the last event

ti−1 on the server and the user can perform the intensity update
on the client side.

The second advantage of the exponential kernel basis is that
µg and θk can be updated via an online stochastic gradient
descent step on the client side, with no event history required.
Following [15], the sgd update is given by,

µg ← µg + dt
[
µg/λg(t

−
i )− µg(ti − tgprev)

]
(7)

θk ← θk + dt
[
F g
k (t
−
i )/λg(t

−
i )− θk

]
, (8)

where g indexes the grid cell containing the new event with
time ti, and tgprev is the time of the last event in grid cell g
(which may not be the same as the time of the most recent
event overall ti−1). The update in Equation 7 is an EM-type
step [15] with the gradient multiplied by µg and the update
in Equation 8 has the gradient multiplied by θk. Empirically
these modifications allow for larger step sizes dt and quicker
convergence.



B. Online word mover distance topic model

In the previous section we developed an online, client-side
estimation strategy for a space-time intensity of events of a
single category. In this section we develop an online, client-
side topic model for text reports accompanying crime and
social disorder events. The idea is that the event is first mapped
to a topic, and then the intensity and model parameters for the
topic are updated as in Equations 6, 7 and 8.

For this purpose we consider l = 1, ..., L topics, each
represented by kl = 1, ..., Cl centers. Each topic center wkl

may be viewed as a word2vec representation of a word,
though there may be no word in the corpus with that exact
representation. Next consider the word2vec transformation of
the bag of words V = {vi}mi=1 (with stop words removed) of
a given crime report. The word movers distance [16] of the
bag of words V to the centers Wl of a particular topic is given
by,

d(V,Wl) =
1

m

m∑
i=1

min
kl∈Wl

‖vi − wkl
‖2. (9)

Thus the topic assigned to each report is the topic with the
closest set of centers according to the word movers distance.

Because topics may change over time, but also for cold
starts, we would like to update the topic centers as new
reports are generated. For this purpose we use a K-means like
heuristic,

wkl
← (1− dt)wkl

+ dt vi (10)

where Wl is topic of V (closest word movers distance) and vi
is the closest word in V to wkl

. Equation 10 is analogous to
Euclidean based online kmeans [17] where the learning rate
dt needs to go to zero for convergence. We do not have a
theoretical justification for this algorithm, but we show in the
next section that the algorithm works reasonably well for our
desired application.

Several practical issues remain for the implementation of
the online topic model. First, we need a word2vec model
for performing the transformations. In light of the privacy
concerns we are attempting to address, and also because we
may have limited data to start, we advocate for the use of
a pre-trained word2vec model. Here we use an open source
word2vec model trained on Google News [18] that could be
embedded within the application on the client. Second, we
need initial center words for each topic at the outset. Here
we propose using a set of seed words for each topic that are
either determined manually by a human expert or that are
chosen from a limited training data set where privacy need
not be maintained during training. We give specific examples
in the next section and henceforth refer to our topic model as
the Seeded Online Word Movers Distance (SOWMD) model.

Our overall algorithm for the crowd-sourced online Hawkes
process is given in Algorithm 1. The client receives the
intensity, model parameters, and topic centers from the server.
The user inputs text, the word2vec representation of the text is
categorized into a topic, and then the topic center is updated.
Next the Hawkes parameters and intensities of that topic are

updated and finally sent back to the server along with the
updated topic centers.

Algorithm 1: Crowd-sourced Online Hawkes
Server

Send: µl
g , F g,l

k (t+i−1), ω
l
k, tg,lprev , θlk, wkl

, dt
Receive: µl

g , F g,l
k (t+i ), t

g,l
prev , θlk, wkl

Client
Receive: µl

g , F g,l
k (t+i−1), ω

l
k, tg,lprev , θlk, wkl

, dt
UserInput: ti, xi, text
1. g ← Grid(xi) \\ Get grid cell of event location
2. V ← word2vec(text) \\ Get bag of word vectors
3. l = argmins d(V,Ws) \\ Get topic of event
4. wkl

← (1− dt)wkl
+ dt vi \\ Update centers

\\ Then update Hawkes parameters and intensity
5. µl

g ← µl
g + dt

[
µl
g/λ

l
g(t
−
i )− µl

g(ti − tg,lprev)
]

6. For each k: θlk ← θlk + dt
[
F g,l
k (t−i )/λ

l
g(t
−
i )− θlk

]
7. For each s,m, k:
F s,m
k (t+i )← e−ωk(ti−ti−1)F s,m

k (t+i−1) + θmk ω
m
k 1s=g

m=l
8. tg,lprev ← ti
Send: µl

g , F g,l
k (t+i ), t

g,l
prev, θlk, wkl

III. EXPERIMENTAL RESULTS

A. Synthetic Hawkes process

We first test the online estimation algorithm developed in
Section IIA on a simulated Hawkes process. We simulate a
Hawkes process with µ = .1 and exponential triggering kernel
θω exp(−ωt) with parameters θ = .5 and ω = .3. For the
kernel basis we use ω1 = .5, ω2 = .1 and ω3 = .05 and
we use an online learning rate of dt = .01. In Figure 2
we track the parameter estimates and error over the course
of successive online gradient descent iterations. Quickly the
background rate µ converges to the true value. Here we fix
dt = .01 to track non-stationary trends in the background
rate, whereas online gradient descent will only converge when
dt → 0. The estimated (effective) parameter θ1 + θ2 + θ3
also converges to the true value of θ = .5. We note that
the l2 error of the triggering kernel decreases but does not
go to zero. This is because of the choice of using only
3 basis functions; our primary goal is to obtain reasonably
accurate privacy preserving models rather than solutions with
the highest accuracy.

B. Topic modeling of Los Angeles crime reports

Next we test the SOWMD topic model on crime report
data from 2009-2014 in Los Angeles. The dataset consists
of 805523 events containing an incident category, date, text
narrative (description of the event), and spatial coordinates of
where the event occurred. To obtain seeds for the SOWMD
model, we use the first 1000 events of the dataset and take the
10 most frequent words in each of the 10 crime types found in
the 1000 events. We use a pre-trained word2vec model trained
on Google News [18] to obtain word vectors for each word
(the same model is used across all of our experiments). These
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Fig. 2: Estimated µ vs online gradient descent iterations (far left), true θ vs estimated θ1 + θ2 + θ3 (middle left), l2 error of
triggering kernel vs iterations (middle right) and triggering kernel estimate at final iteration (far right).

10 word vectors form the centers of each of the 10 clusters
we use to seed the SOWMD algorithm. We then apply the
online algorithm to the next 50000 events, as well as the LDA
algorithm provided with gensim [19]. In Table I we compare
SOWMD vs LDA using the UCI coherence measure [20],
which is based upon the frequency of pairs of topic words
relative to their individual frequencies and has good correlation
with human measures of topic cohesiveness [21]. On average
the SOWMD model has a higher UCI coherence level, as has
been reported for offline word movers distance models. Both
models have some coherent topics, for example topic 1 for
LDA refers to fraud whereas topic 1 for SOWMD refers to
assault. Several low coherence topics also emerge, topic 3 and
8 in the case of LDA and topic 4 in the case of SOWMD.

We note that, while the SOWMD algorithm was seeded with
crime type categories, as the algorithm moves forward in time
the topics evolve and are not meant to simply classify crime
type. We explore this effect more in the next section in terms
of the accuracy of the coupled SOWMD-online Hawkes model
when used for predicting space-time crime patterns.

C. Space-time crime prediction in Los Angeles

Building off of the experiment in the previous section, we
next test the full Algorithm 1 for simultaneous topic and
Hawkes intensity estimation. We again use the LAPD crime
data set, however this time we estimate an intensity λlg(t) for
each of the 10 topics. We then use the estimated intensity to
rank all grid cells g in the city each day according to their
risk of incidents of type l. One popular choice for measuring
the accuracy of a crime ranking algorithm is the Predictive
Accuracy Index (PAI) [4], which measures the percentage of
incidents captured in the top k grid cells flagged for patrol.
The PAI is area normalized (by the area of the k cells) so that
a PAI of 1 corresponds to random predictions.

In Figure 3 we display the PAI for the online, crowd-sourced
Hawkes process for several topics learned by the algorithm.
For comparison, we use an offline Hawkes process [5] trained
on the given crime categories and display those results as a
baseline. The highest PAI corresponds to aggrevated assault
and the offline model. Violent crimes occurring on the street
network have a higher PAI because the incidents are more
highly concentrated compared to property crime. The online
model learns a similar category where the most frequent
words are attempted, stab, and knife. The PAI is not as
high as the offline assault model, but the online intensity

is still reasonably accurate. Additionally, for the next two
topics related to property and vehicle crime, the online model
outperforms the offline model in terms of vehicle theft and
burglary. One explanation for the improvement in accuracy
is that the SOWMD-Hawkes model may learn more coherent
topics compared to crime categories in some cases, therefore
leading to more concentrated Hawkes intensities and higher
PAI values.
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Fig. 3: PAI comparison of offline Hawkes process trained
using crime type categories and online Hawkes process using
SOWMD topic categories.

D. Modeling Nextdoor public safety posts in Indianapolis

In our final experiment, we apply the online joint SOWMD-
Hawkes model in Algorithm 1 to public safety posts from
Nextdoor. The dataset consists of 115 posts tagged as public
safety between July 1st and December 7th 2017 from the
Meridian-Kessler area of Indianapolis. We use a time only
Hawkes process and use the text of each post to extract the
topic. Because the dataset is limited in size, we seed the topic
model with simply the first 10 posts (comprising each of the
10 topics).

In Figure 4 we provide an example anonymized post and the
corresponding topic that was learned in training. Many posts
contain personal identifying information (names, address, etc.)
and in some posts a victim and/or perpetrator is identified.
For this reason, along with the fact that private companies
may only want to share limited data with law enforcement,



TABLE I: Topic coherence comparison between LDA and Seeded Online Word Movers Distance (SOWMD) topic model.
LDA (Aggregate UCI=.13) UCI

1. used, info, without, personal, permission, card, credit, open, obtain, number 1.442228399
2. kill, stated, verbal, dispute, fled, threatened, going, phone, location, knife 0.475918243
3. id, theft, check, took, location, use, property, cash, forged, checks -1.901758853
4. fled, face, punched, approached, grabbed, head, struck, property, hit, left 0.371021747
5. fled, vehicle, property, window, door, location, side, rear, used, open 0.412661259
6. fled, vehicle, property, location, approached, demanded, took, s2, money, handgun 0.493246568
7. property, fled, removed, location, vehicle, entered, window, entry, direction, took 0.443388061
8. vehicle, order, return, court, failed, upon, location, child, mo, missing -2.994888929
9. became, times, causing, face, argument, struck, punched, verbal, angry, involved 1.571898116
10. entered, store, without, paying, location, exited, property, items, removed, concealed 1.027530669

SOWMD (Aggregate UCI=.81) UCI

1. pushed, grabbed, punched, dispute, approached, causing, face, verbal, kicked, hands 1.044113194
2. property, vehicle, removed, window, entered, smashed, location, fled, took, door 0.445021529
3. vehicle, vandalized, window, fled, smashed, tires, rear, approached, slashed, parked 0.329571273
4. vehicle, stated, became, used, verbal, face, kill, money, causing, approached -0.126301107
5. used, info, personal, open, employment, obtain, id, identity, without, ssn 1.304224724
6. used, info, personal, obtain, employment, gain, ssn, identity, property, tax 0.930475982
7. threatened, kill, fear, called, shoot, harm, knife, life, gun, verbally 0.808682825
8. used, identity, info, personal, gain, purchases, permission, card, purchase, name 1.456026639
9. fled, location, property, vehicle, removed, entered, door, window, took, dir 0.425668881
10. used, info, id, card, without, personal, permission, credit, obtain, open 1.447870606

we believe a privacy preserving Hawkes process could find
application in partnerships between companies like Nextdoor,
public agencies, and the general public.

Fig. 4: Example anonymized Nextdoor post and corresponding
topic.

In Figure 5 we plot the learned intensities for the top four
topics. The topics have four general themes: car break-ins
common in the area, packages stolen from houses, bikes stolen,
and a fourth topic where people are posting that they see
police in the area. These type of intensities could serve several
functions. They could alert police to areas in the city where
patrols or other interventions are needed. They also might give
citizens valuable information on social disorder and crime in
their city. For example, knowing that the risk of package theft
increases several-fold in October 2017 is valuable information
for community members to access. Currently users can only
see posts from their neighborhood, presumably for privacy
reasons, but privacy preserving intensities such as those in
Figure 5 might be shared across neighborhoods without ex-
posing sensitive information.

IV. DISCUSSION

A. On the transparency of Algorithm 1

On the one hand, Algorithm 1 is transparent in the sense
that the source code is open and lives on the client side of
the application. That being said, a deep neural network might
also satisfy the same conditions while being viewed as less

transparent than a logistic regression. The most opaque step
is step 2, where word2vec is used to represent word vectors
in a low dimensional space. However, the overall SOWMD
algorithm has an intuitive description: a topic is chosen for the
text such that the words in the topic are semantically closest on
average to the words of the text. The Hawkes parameter and
intensity updates 5-7 are fairly simple and the main takeaway
from a user perspective is that, by posting a crime report,
the user is increasing the estimated risk of incidents (of the
categorized topic) in their neighborhood g. In the scenario
where police are patrolling based upon the estimated intensity,
then filing a crime report through the application may be
viewed as a probabilistic request for extra patrols in one’s
neighborhood.

B. On the privacy of Algorithm 1

In terms of privacy we have ignored formal definitions such
as differential privacy [22]. Instead, we have focused on the
goals of 1) storing minimal user information 2) reducing the
risk of identification using geolocation information and 3) min-
imizing the risk of identification using the text from the report.
In terms of 1), no historical data is stored save for the most
recent event time in each grid cell. Some information still may
be inferred in terms of 2) and 3). For example, if the grid cell
size is small enough then the location of the reporter is known
up to that distance scale. This is consistent with methods police
agencies currently employ to reduce geolocation identification,
namely rounding to the nearest block or some other larger
geographical unit. Some information on the text of the report
may also be inferred from the SOWMD word center update,
in particular the words semantically closest to the centers of
the selected topic. This risk can be reduced by keeping the
number of centers small or only updating the center if the
closest report word is sufficiently close in the word vector
space (for example to prevent the person’s last name from
being exposed even when it is a far distance from all centers).
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C. Future directions

The experiments here were conducted on historical data and
the impact of incorporating crowd-sourced information from
crime tips, Nextdoor, and similar sources has to date not been
tested in the field. Future research may focus on the impact of
this type of crowd-sourcing, in terms of the impact on crime
rates as well as perceptions of predictive policing. Similar
Hawkes process models also arise in other social settings
and recent applications include Twitter resharing [23], IPTV
viewing behavior [24], and human mobility [25]. The methods
here may provide computationally efficient, privacy preserving
alternatives to recently introduced Hawkes-topic models based
upon LDA [26].
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