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a b s t r a c t

Field-theoretic models, which replace interactions between polymers with interactions
between polymers and one or more conjugate fields, offer a systematic framework for
coarse-graining of complex fluids systems. While this approach has been used successfully
to investigate a wide range of polymer formulations at equilibrium, field-theoretic models
often fail to accurately capture the non-equilibrium behavior of polymers, especially in the
early stages of phase separation. Here the ‘‘two-fluid” approach serves as a useful alterna-
tive, treating the motions of fluid components separately in order to incorporate asymme-
tries between polymer molecules. In this work we focus on the connection of these two
theories, drawing upon the strengths of each of the approaches in order to couple polymer
microstructure with the dynamics of the flow in a systematic way. For illustrative purposes
we work with an inhomogeneous melt of elastic dumbbell polymers, though our method-
ology will apply more generally to a wide variety of inhomogeneous systems. First we
derive the model, incorporating thermodynamic forces into a two-fluid model for the flow
through the introduction of conjugate chemical potential and elastic strain fields for the
polymer density and stress. The resulting equations are composed of a system of fourth
order PDEs coupled with a non-linear, non-local optimization problem to determine the
conjugate fields. The coupled system is severely stiff and with a high degree of computa-
tional complexity. Next, we overcome the formidable numerical challenges posed by the
model by designing a robust semi-implicit method based on linear asymptotic behavior
of the leading order terms at small scales, by exploiting the exponential structure of global
(integral) operators, and by parallelizing the non-linear optimization problem. The semi-
implicit method effectively removes the fourth order stability constraint associated with
explicit methods and we observe only a first order time-step restriction. The algorithm
for solving the non-linear optimization problem, which takes advantage of the form of
the operators being optimized, reduces the overall simulation time by several orders of
magnitude. We illustrate the methodology with several examples of phase separation in
an initially quiescent flow.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Self-assembled polymeric systems are of fundamental importance in a variety of applications, such as multiphase plastic
materials and solution formulations, and recently a great deal of interest has focused on the application of polymers in soft
. All rights reserved.
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material nanotechnology [8]. Though experimental methods are vital in the design of such materials, computer simulation
and theory can aid in the exploration of parameter spaces, reducing both the time and cost of the material design process.

One approach that has been very useful in the study of self-assembly in polymeric systems is polymer field theory. Field-
theoretic models, which replace interactions between polymers with interactions between polymers and one or more con-
jugate fields, allow for systematic coarse-graining and thus simulation is possible over a broad range of scales [8]. Such
methods have found wide application in the study of the equilibrium structure and thermodynamics of inhomogeneous
polymer melts and concentrated solutions of homo-, block- and graft copolymers [6,8,10,12,14–16]. However, flow dynamics
are often neglected in such models and polymer field theory has been less successful in the study of non-equilibrium re-
gimes, such as the initial stages of phase separation.

For polymeric systems in which flow dynamics of component molecules play a significant role, the ‘‘two-fluid” approach
[5,17,18] has proven to be a useful formalism. Two-fluid models treat the motion of fluid components separately and have
provided insight into polymeric fluids with asymmetries between component molecules. The drawback of such models, in
comparison to polymer field theory, is that the microscopic structure of polymer molecules is not easily incorporated and
phenomenological equations are typically used for the chemical potentials and polymer stresses.

In this work we focus on the connection of these two theories, incorporating polymer microstructure, via field theory, into
the two-fluid modeling approach. To our knowledge we present the first computational study of coupled flow-polymer
dynamics under the framework developed in [7], avoiding constitutive laws for the chemical potential fields and polymer
stresses. For illustrative purposes we work with an inhomogeneous melt of elastic dumbbell polymers, though our method-
ology will apply more generally to a wide variety of inhomogeneous systems. We thus view this work as a stepping stone,
providing a foundation for more advanced studies of polymer dynamics.

Our methodology is based on the work in [7], where a model for polymer solutions is developed that embeds exact ther-
modynamic forces, through the introduction of conjugate chemical potential and elastic strain fields for the polymer density
and stress variables, into a two-fluid model for the flow. We note that a similar model is considered in [9], where the two-
fluid approach is combined with polymer field-theory for inhomogeneous polymer melts and a numerical method is pre-
sented. However, the model in [9] is considerably simplified from [7] in that only chemical potential fields are introduced
and a phenomenological constitutive law for stress dynamics is used.

Due to the complex nature of the models that arise from the approach developed in [7], several computational challenges
must be overcome. The form of the models is a system of high order, non-linear partial differential equations for the density,
stress, and velocity variables, coupled with a non-linear, non-local optimization problem for the chemical potential and elas-
tic strain variables. The presence of high order derivatives leads to numerical stiffness and the size of the discrete time-step
used in simulation is severely restricted for explicit methods. Additionally, the non-linear optimization problem must be
solved at each point in time and thus the computational cost of each time-step is much higher than is typically the case
in standard numerical CFD problems. In this work we address these computational challenges and develop a numerical
methodology capable of efficiently simulating polymeric fluids modeled by the approach in [7].

The organization of the paper is as follows: in Section 2, we derive a model for an inhomogeneous melt of elastic dumb-
bell polymers, connecting the microscopic description of the polymers to the macroscopic description of the fluid. The model
is composed of a system of fourth order PDEs coupled with a non-linear optimization problem for the conjugate fields. In
Section 3, we present the numerical method for the model, which consists of a semi-implicit time integration scheme for
the system of PDEs coupled with an efficient, parallel algorithm for the non-linear optimization problem. In designing the
semi-implicit integration scheme, we draw upon ideas used for phase-field models of polymers [1,3] and linear operators
are extracted from the right-hand side of the PDEs and treated implicitly. Whereas explicit methods have a fourth order
time-step restriction, we observe only a first order stability constraint for the semi-implicit strategy. The algorithm for
the non-linear optimization problem, which includes techniques designed for problems arising in polymer self-consistent
field theory [2], takes advantage of the specific form of the operators being optimized and reduces the run time of simula-
tions by several orders of magnitude. In Section 4, we implement our methodology for a phase separating melt of elastic
dumbbells and also investigate the effects of asymmetry between the fluid components. We provide an estimate of the
time-step restriction of the semi-implicit method and highlight the computational savings over alternative methodologies.

2. Derivation of the model

2.1. Microscopic model for elastic dumbbell polymers

We start with a particle based model of a binary, incompressible melt of elastic dumbbells (a bead-spring model for the
polymers using two beads). We let Ra1 and Ra2 denote the positions of the 1st and 2nd beads of the ath polymer of type a and
Rb1 and Rb2 denote the positions of the 1st and 2nd beads of the bth polymer of type b. Here a ¼ 1; . . . ;na and b ¼ 1; . . . ;nb,
where na and nb are the number of polymers of type a and b.

We work in the nVT canonical ensemble and conformations of non-interacting polymers are given a Gaussian statistical
weight, expð�U0=kBTÞ, with a stretching free energy of the form,
U0 ¼
kT

4Rg2
a

Xna

a¼1

ðRa2 � Ra1 Þ
2 þ kT

4Rg2
b

Xnb

b¼1

ðRb2 � Rb1 Þ
2
; ð1Þ
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where Rg2
a and Rg2

b are the unperturbed radii-of-gyration, kB is the Boltzmann constant, and T is the thermodynamic temper-
ature of the system. To simplify the notation we express energies in units of kBT and set kBT ¼ 1.

The effective potential energy function representing non-bonded interactions between monomers (beads) on the same
polymer and between monomers on different polymers is given by the first several terms of a gradient expansion of a general
non-local interaction potential [10]:
U1 ¼
Z

dr v1q̂aðrÞq̂bðrÞ þ
1
2
v2jrq̂aðrÞj2 þ

1
2
v2jrq̂bðrÞj2

� �
; ð2Þ
where q̂aðrÞ ¼
P2

i¼1

Pna
a¼1dðr� Rai

Þ and q̂bðrÞ ¼
P2

i¼1

Pnb
b¼1dðr� Rbi

Þ are microscopic monomer number densities and v1 and
v2 are energetic parameters that penalize a–b bead contacts and density gradients, respectively. Non-local interactions
can play a critical role for small molecule systems and we find that the gradient terms in (2) are needed for their regularizing
effect. Additionally, we have expressions for the microscopic elastic stresses [4] that take the form
½r̂aðrÞ�jk ¼
1

4Rg2
a

Xna

a¼1

ðRa2 � Ra1 ÞjðRa2 � Ra1 Þk � ½dðr� Ra1 Þ þ dðr� Ra2 Þ� ð3Þ
and
½r̂bðrÞ�jk ¼
1

4Rg2
b

Xnb

b¼1

ðRb2 � Rb1 ÞjðRb2 � Rb1 Þk � ½dðr� Rb1 Þ þ dðr� Rb2 Þ�: ð4Þ
With this microscopic description of the polymers, the configurational partition function is given as
Z ¼
Yna

a¼1

Ynb

b¼1

Z
dRa1

Z
dRa2

Z
dRb1

Z
dRb2 expð�U0 � U1Þ: ð5Þ
2.2. Field-theoretic form of the model

To transform the microscopic model into a field theory, we proceed by inserting the identity
Z
D½qa�

Z
D½ra�dðqa � q̂aÞdðra � r̂aÞ ¼

Z
D½qb�

Z
D½rb�dðqb � q̂bÞdðrb � r̂bÞ ¼ 1 ð6Þ
into the expression for the configurational partition function given by Eq. (5) (we refer to [8] for details), where the integrals
appearing in this equation are functional integrals over the real fields qa, qb, ra and rb. Next we introduce functional integrals
over the conjugate chemical potential fields laðrÞ and lbðrÞ and elastic strain fields �aðrÞ and �bðrÞ through the identities
dðqa � q̂aÞdðra � r̂aÞ ¼
Z
D½la�

Z
D½�a� exp i

Z
dr½laðqa � q̂aÞ þ �a : ðra � r̂aÞ�

� �
; ð7Þ

dðqb � q̂bÞdðrb � r̂bÞ ¼
Z
D½lb�

Z
D½�b� exp i

Z
dr½lbðqb � q̂bÞ þ �b : ðrb � r̂bÞ�

� �
; ð8Þ
where � : r ¼
P

ij�ijrij. These two steps allow the configurational partition function to be expressed as
Z ¼
Z
D½qa�

Z
D½qb�

Z
D½ra�

Z
D½rb�

Z
D½la�

Z
D½lb�

Z
D½�a�

Z
D½�b� expð�H½qa;qb;ra;rb;la;lb; �a; �b�Þ; ð9Þ
where the effective Hamiltonian H in this equation is given by
H ¼
Z

dr v1qaðrÞqbðrÞ þ
1
2
v2jrqaðrÞj

2 þ 1
2
v2jrqbðrÞj

2 � ilaðrÞqaðrÞ � ilbðrÞqbðrÞ � i�aðrÞ : raðrÞ � i�bðrÞ : rbðrÞ
� �

� na ln Q a½ila; i�a� � na ln Q b½ilb; i�b�:
ð10Þ
The functionals Q a and Q b, which are partition functions of a single dumbbell polymer in the purely imaginary chemical po-
tential and strain fields [8], satisfy
Qa ¼
1

Q a0

Z
dr
Z

dr0 exp �ilaðrÞ � ilaðr0Þ �
1

4Rg2
a

ðr� r0Þ2 : ½I þ i�aðrÞ þ i�aðr0Þ�
 !

ð11Þ
and
Qb ¼
1

Q b0

Z
dr
Z

dr0 exp �ilbðrÞ � ilbðr0Þ �
1

4Rg2
b

ðr� r0Þ2 : ½I þ i�bðrÞ þ i�bðr0Þ�
 !

: ð12Þ
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The normalization factors Q a0 and Q b0 are defined so that Qa½0; 0� ¼ Q b½0;0� ¼ 1 and in the above expression I denotes the
unit tensor.

2.3. Mean-field approximation

Thermodynamic forces are obtained through the variational derivatives of the effective Hamiltonian,
dH
dqa

;
dH
dqb

;
dH
dra

;
dH
drb

;
dH
dla

;
dH
dlb

;
dH
d�a

;
dH
d�b

: ð13Þ
For dense systems, such as the melt considered in this work, the functional integral appearing in Eq. (9) is dominated by a
saddle point, ðl�a;l�b; ��a; ��bÞ, of H [10], which satisfies:
dH
dla

����
qa ;ra ;la¼l�a ;�a¼��a

¼ dH
dlb

����
qb ;rb ;lb¼l�

b
;�b¼��b

¼ 0; ð14Þ

dH
d�a

����
qa ;ra ;la¼l�a ;�a¼��a

¼ dH
d�b

����
qb ;rb ;lb¼l�

b
;�b¼��b

¼ 0: ð15Þ
We thus ignore all fluctuations in the l and � fields and require Eqs. (14) and (15) to hold. As it turns out, the physically
relevant saddle points prove to be purely imaginary and for convenience we set la  ila, lb  ilb, �a  i�a and �b  i�b.
Thus for the remainder of this paper all fields will be purely real.

Taking the variational derivatives of H, we have
dH
dqa
¼ v1qb � v2r2qa � la; ð16Þ

dH
dra
¼ ��a; ð17Þ

dH
dla
¼ ~qa � qa; ð18Þ

dH
d�a
¼ ~ra � ra ð19Þ
with similar equations holding for polymers of type b, where the density and stress operators ~qa and ~ra are given by
~qaðrÞ ¼ �na
d ln Q a

dla
¼ 2na

Q aQ a0
expð�laðrÞÞ

Z
dr0 exp �laðr0Þ �

1
4Rg2

a

ðr� r0Þ2 : ½I þ �aðrÞ þ �aðr0Þ�
 !

ð20Þ
and
~raðrÞ ¼ �na
d ln Q a

d�a
¼ na

2Rg2
aQ aQa0

expð�laðrÞÞ
Z

dr0ðr� r0Þ2 exp �laðr0Þ �
1

4Rg2
a

ðr� r0Þ2 : ½I þ �aðrÞ þ �aðr0Þ�
 !

: ð21Þ
2.4. Two-fluid model

To model the flow we adopt the two-fluid approach outlined in [5] and begin by introducing a Rayleigh functional,
R ¼W=2þ _H, which is the sum of half of the energy dissipation rate W and the rate of change of the effective Hamiltonian
_H. The model for W assumes a local, frictional coupling associated with the relative motions of the polymers a and b,
W ¼
Z

drnjva � vbj2; ð22Þ
where
n ¼ nanb

na þ nb
; ð23Þ
na ¼ na0qa and nb ¼ nb0qb are polymer friction coefficients per unit volume, qa and qb are monomer number densities, and va

and vb are the species velocities of polymers a and b.
The rate of change of the effective Hamiltonian is obtained using the chain rule:
_H ¼
Z

dr
dH
dqa

oqa

ot
þ dH

dqb

oqb

ot
þ dH

dra
:
ora

ot
þ dH

drb
:
orb

ot

� �
; ð24Þ
where we have only retained the time variations of the fields that have microscopic Poisson-bracket couplings [11] to the
polymer velocity fields.
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Since q̂a and q̂b are microscopically conserved, the corresponding macroscopic density variables satisfy continuity
equations:
oqa

ot
¼ �r � ðvaqaÞ ð25Þ
and
oqb

ot
¼ �r � ðvbqbÞ: ð26Þ
The macroscopic stress variables corresponding to r̂a and r̂b are not conserved, but instead are rotated and advected by the
polymer velocity according to:
ora

ot
¼ �r � ðvaraÞ þ ðrvaÞT � ra þ ra � ðrvaÞ ð27Þ
and
orb

ot
¼ �r � ðvbrbÞ þ ðrvbÞT � rb þ rb � ðrvbÞ: ð28Þ
In order to enforce incompressibility, the Rayleigh functional can be modified with a Lagrange multiplier term, with a pres-
sure field P acting as the Lagrange multiplier,
RM ¼ R�
Z

drPðr; tÞr � ½vaqa þ vbqb�: ð29Þ
Taking variational derivatives of RM with respect to the polymer velocity fields leads to two momentum balance equations:
qmqa
ova

ot
¼ � dRM

dva
¼ �nðva � vbÞ � r �Pa � qarP; ð30Þ

qmqb
ovb

ot
¼ � dRM

dvb
¼ �nðvb � vaÞ � r �Pb � qbrP; ð31Þ
where qm is the polymer mass per monomer (assumed to be equal for the two types of polymers) and
r �Pa ¼ r �Pqa
þr �Pra ; ð32Þ

r �Pqa
¼ qar

dH
dqa

; ð33Þ

r �Pra ¼ �
dH
dra

: ðrraÞ þ r
dH
dra

: ra

� �
� 2r � dH

dra
� ra

� �
ð34Þ
and similarly for polymer b. For simplicity we assume qm ¼ 1, qa þ qb ¼ 1.
Following [5], we define the species velocity difference w ¼ va � vb and rewrite (30) and (31) in terms of w and the den-

sity averaged velocity v ¼ qava þ qbvb, obtaining:
ov
ot
þw

oqb

ot
¼ �r �Pa �r �Pb �rP; ð35Þ

ow
ot
¼ � n

qa
þ n

qb

� �
w� 1

qa
r �Pa þ

1
qb
r �Pb: ð36Þ
Often it is the case that the second term on the left-hand side of the first equation and the left-hand side of the second equa-
tion are dominated by the other terms [5]. When these terms are neglected we obtain:
ov
ot
¼ �r �Pa �r �Pb �rP; ð37Þ

w ¼ �1
n
ðqbr �Pa � qar �PbÞ; ð38Þ
where incompressibility is enforced by r � v ¼ 0. The definitions of v and w result in the following equations for the species
velocities:
va ¼ v � qb

n
r �Pa þ

qaqb

n
ðr �Pa þr �PbÞ ð39Þ
and
vb ¼ v � qa

n
r �Pb þ

qaqb

n
ðr �Pa þr �PbÞ: ð40Þ
Lastly, Eqs. (27) and (28) for the stress must be modified in order to restore diagonal dissipative couplings on the compo-
nents of the stress, corresponding to stress relaxation in a homogeneous polymer melt. We thus make the phenomenological
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modification, as is done in [7], of adding the terms �ðqa=saÞdH=dra and �ðqb=sbÞdH=drb to the right-hand side, where sa and
sb are stress relaxation time parameters.

2.5. Summary

In summary, our model for an incompressible melt of elastic dumbbells is given by:

oqa

ot
¼ �r � ðvaqaÞ; ð41Þ

oqb

ot
¼ �r � ðvbqbÞ; ð42Þ

ora

ot
¼ �r � ðvaraÞ þ ðrvaÞT � ra þ ra � ðrvaÞ �

qa

sa

dH
dra

; ð43Þ

orb

ot
¼ �r � ðvbrbÞ þ ðrvbÞT � rb þ rb � ðrvbÞ �

qb

sb

dH
drb

; ð44Þ

va ¼ v � qb

n
r �Pa þ

qaqb

n
ðr �Pa þr �PbÞ; ð45Þ

vb ¼ v � qa

n
r �Pb þ

qaqb

n
ðr �Pa þr �PbÞ; ð46Þ

ov
ot
¼ �r �Pa �r �Pb �rP; ð47Þ

r � v ¼ 0 ð48Þ

and
dH
dla
¼ dH

dlb
¼ 0;

dH
d�a
¼ dH

d�b
¼ 0; ð49Þ
where
r �Pa ¼ qar
dH
dqa
� dH

dra
: ðrraÞ þ r

dH
dra

: ra

� �
� 2r � dH

dra
� ra

� �
; ð50Þ

r �Pb ¼ qbr
dH
dqb
� dH

drb
: ðrrbÞ þ r

dH
drb

: rb

� �
� 2r � dH

drb
� rb

� �
: ð51Þ
The general outline for computing the solution goes as follows. Given the fields qn
a , qn

b , rn
a , rn

b , vn at time tn, the first step is to
solve for the conjugate fields ln

a , ln
b , �n

a , �n
b by approximating the solution to the non-linear optimization problem (49). Next the

thermodynamic forces appearing in (50) and (51) are computed in order to update the species velocities vn
a and vn

b in Eqs. (45)
and (46). Lastly, Eqs. (41)–(44) and Eqs. (47) and (48) are used to compute the fields qnþ1

a , qnþ1
b , rnþ1

a , rnþ1
b , vnþ1 at time tnþ1.

Due to the form of the stress operators ~ra and ~rb, we have the symmetric properties that ra ¼ rT
a , rb ¼ rT

b , �a ¼ �T
a and

�b ¼ �T
b . Thus in two dimensions only one of the redundant off diagonal terms needs to be retained for each of these variables

in computations.

3. Numerical methodology

In this section we present a numerical method for Eqs. (41)–(51) that eliminates the fourth order time-step restrictions
associated with explicit methods and allows for the efficient solution of the non-linear optimization problem given by (49).

We work in two spatial dimensions and use periodic boundary conditions in each direction. The discretization in space is
pseudo-spectral, where all derivatives are computed with spectral accuracy for smooth fields using Fast Fourier Transforms.
Additionally, after updating all the variables at each time-step, we de-alias qa, ra and v in Fourier space with the smoothing
operator e�36ðjkj=jkmax jÞ36

suggested in [13] as a more accurate alternative to the ‘‘two-thirds rule”.

3.1. Time integration strategy

The equations of motion for the density and stress variables contain high order derivatives, up to fourth order in qa and
second order in ra. Explicit methods, when applied to such equations, have severe time-step restrictions, requiring prohib-
itively small time-step sizes. In this section, we present a semi-implicit time-stepping strategy which reduces efficiently the
time-step restrictions associated with explicit methods.

Writing Eqs. (41)–(51) as

oqa

ot
¼ fqa

ðqa;vaÞ; ð52Þ
ora

ot
¼ fra ðqa; ra; �a;vaÞ; ð53Þ

ov
ot
¼ fvðqa;qb;ra;rb;la;lb; �a; �bÞ ð54Þ
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(with similar equations for polymer b), our approach, similar to [1,3], is to extract a linear operator L from f that contains the
linearized, high order derivative terms of f that produce numerical stiffness. We then treat L semi-implicitly, obtaining a
time-stepping scheme of the form:
qnþ1
a � qn

a

Dt
¼ Lnþ1

qa
þ f n

qa
� Ln

qa
; ð55Þ

rnþ1
a � rn

a

Dt
¼ Lnþ1

ra
þ f n

ra
� Ln

ra
ð56Þ
and
vnþ1 � vn

Dt
¼ Lnþ1

v þ f n
v � Ln

v : ð57Þ
The first step is to approximate the fields la and �a to leading order in qa and ra. From Eq. (20) we have that
la ¼ � logðqaÞ þ log
2na

QaQ a0

Z
dr0e

�laðr0 Þ� 1
4Rg2

a
ðr�r0 Þ2 :½Iþ�aðrÞþ�aðr0 Þ�

� �
: ð58Þ
When the right side is expanded to first order in la and �a, the first term is dominant at high frequencies and therefore we
have for large k the relation,
F½la�ðkÞ � �F½logðqaÞ�ðkÞ; ð59Þ
where F denotes the Fourier transform. Expanding the operators ~qa and ~ra in Eqs. (20) and (21) to first order in la and �a, we
have
qaðrÞ � qa0ð1� laðrÞÞ �
qa0

G

Z
dr0ðgðr; r0Þ � laðr0ÞÞ �

qa0

4GRg2
a

Z
dr0ðgðr; r0Þ � ½ðr� r0Þ2 : �aðr0Þ�Þ

� qa0

4GRg2
a

�aðrÞ :

Z
dr0ðgðr; r0Þ � ðr� r0Þ2Þ ð60Þ
and
raðrÞ �
qa0

4GRg2
a

ð1� laðrÞÞ �
Z

dr0ðgðr; r0Þ � ðr� r0Þ2Þ � qa0

4GRg2
a

Z
dr0ðgðr; r0Þ � laðr0Þ � ðr� r0Þ2Þ

� qa0

16GRg4
a

Z
dr0ðgðr; r0Þ � ðr� r0Þ2 � ½ðr� r0Þ2 : �aðr0Þ�Þ �

qa0

16GRg4
a

Z
dr0ðgðr; r0Þ � ðr� r0Þ2 � ½ðr� r0Þ2 : �aðrÞ�Þ; ð61Þ
where
gðr; r0Þ ¼ exp � jr� r0j2

4Rg2
a

 !
; G ¼

Z
drgðr; r0Þ ð62Þ
and qa0 ¼ 2na=V is the average monomer density of polymer a. The second and third terms in each of the above expansions
can be neglected at high frequencies (due to the decay of the Gaussian kernel in Fourier space) and after evaluating the
remaining Gaussian integrals we are left with:
qaðrÞ � qa0ð1� laðrÞÞ �
qa0

2
�11a ðrÞ �

qa0

2
�22aðrÞ; ð63Þ

r11aðrÞ �
qa0

2
ð1� laðrÞÞ �

3qa0

4
�11a ðrÞ �

qa0

4
�22aðrÞ; ð64Þ

r12aðrÞ �
qa0

2
�12aðrÞ; ð65Þ

r22aðrÞ �
qa0

2
ð1� laðrÞÞ �

3qa0

4
�22a ðrÞ �

qa0

4
�11aðrÞ: ð66Þ
Solving for �a, we have the following relations for large k:
F½�11a �ðkÞ �
2

qa0
F

1
2
qa � r11a

� �
ðkÞ; ð67Þ

F½�22a �ðkÞ �
2

qa0
F

1
2
qa � r22a

� �
ðkÞ; ð68Þ

F½�12a �ðkÞ �
2

qa0
F½�r12a �ðkÞ: ð69Þ
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Following the methodology in [1,3], we next linearize the operator f about a homogeneous solution, ra ¼ 1
2 qaI;v ¼ 0; �a ¼ 0,

using the relations (59) and (67)–(69). For qa, we have that
oqa

ot
¼ r � q2

aq2
b

n
r � dH

dqa

� �
�r � q2

aq2
b

n
r � dH

dqb

� �
þ � � � ð70Þ
and using qa þ qb ¼ 1 we find that
Lqa
¼ qaqb

n
r2qa �

2q2
aq2

bv1

n
r2qa �

2q2
aq2

bv2

n
r4qa: ð71Þ
For ra, with Prax denoting the x component of Pra , we have that
or11a

ot
¼ �r11a

o

ox
qb

n
Prax

� �
þ r11a

o

oy
qb

n
Pray

� �
� ðqa=saÞ

dH
dr11a

þ � � � ; ð72Þ

or22a

ot
¼ �r22a

o

oy
qb

n
Pray

� �
þ r22a

o

ox
qb

n
Prax

� �
� ðqa=saÞ

dH
dr22a

þ � � � ; ð73Þ

or12a

ot
¼ �r11a

o

ox
qb

n
Pray

� �
� r22a

o

oy
qb

n
Prax

� �
� ðqa=saÞ

dH
dr12a

þ � � � ; ð74Þ
where the last terms on the right-hand side are retained in order to reduce the dependence of the time-step restriction on
the stress relaxation parameter sa. Since we are linearizing about �a ¼ 0, many of the high order terms from Pra vanish and
we are left with
Lr11a
¼ qaqb

2n
r2r11a �

2
sa

r11a ; ð75Þ

Lr22a
¼ qaqb

2n
r2r22a �

2
sa

r22a ; ð76Þ

Lr12a
¼ qaqb

n
r2r12a �

2
sa

r12a ; ð77Þ
where we have retained only the second order diagonal terms and the terms involving sa. For the velocity v we note that fv
does not depend on the velocity and therefore we set Lv ¼ fv .

So far we have neglected the high order qa terms appearing in the evolution equation for the stress variable. In order to
remove the stiffness associated with these terms, we treat qa implicitly in the right-hand side of the equation for the stress.
In summary, our numerical integration scheme is given by:
qnþ1
a � qn

a

Dt
¼ �C1r4qnþ1

a þ C2r2qnþ1
a þ fqa

ðqn
a ;v

n
aÞ þ C1r4qn

a � C2r2qn
a ; ð78Þ

rnþ1
ija
� rn

ija

Dt
¼ Cij

3r2rnþ1
ija
� C4rnþ1

ija
þ fra ðqnþ1

a ;rn
a ; �

n
a ;v

�
aÞ � Cij

3r2rn
ija
þ C4rn

ija
; ð79Þ

vnþ1 � vn

Dt
¼ fvðqnþ1

a ;qnþ1
b ;rnþ1

a ;rnþ1
b ;lnþ1

a ;lnþ1
b ; �nþ1

a ; �nþ1
b Þ; ð80Þ
where
v�a ¼ va½vn;qnþ1
a ;qnþ1

b ; rn
a ; r

n
b;l

n
a ;l

n
b; �

n
a ; �

n
b �: ð81Þ
As in [1,3], the constants are given by the maximum value of the coefficients of the linearized terms,
C1 ¼max
r

qaðrÞqbðrÞ
nðrÞ ð1� 2qaðrÞqbðrÞv1Þ

� �
; C2 ¼ max

r

2qaðrÞ
2qbðrÞ

2v2

nðrÞ

" #
;

2C11
3 ¼ 2C22

3 ¼ C12
3 ¼ max

r

qaðrÞqbðrÞ
nðrÞ

� �
; C4 ¼

2
sa
; ð82Þ
which can either be calculated analytically or computed at each time-step.

3.2. Mean-field computation

Since the mean-field approximation is employed to determine the chemical potential and elastic strain fields, the non-
linear optimization problem,
dH
dla
½qn

a ;l
n
a ; �

n
a � ¼ 0;

dH
d�a
½rn

a ;l
n
a ; �

n
a � ¼ 0; ð83Þ
must be solved at each time-step tn (and similarly for polymer b). Following [2], we use a gradient flow approach, writing
(83) as



Table 1
Integra

Domain

20 � 20
20 � 20
40 � 40
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ola

os
¼ dH

dla
½qn

a ;la; �a� ð84Þ
and
o�a

os
¼ dH

d�a
½rn

a ;la; �a�; ð85Þ
where s is a fictitious time variable and the steady-state solution corresponds to the mean-fields ln
a and �n

a . We then discret-
ize Eqs. (84) and (85), following [2] using the two-step Seidel type iteration scheme
liþ1;n
a � li;n

a

Ds
¼ dH

dla
½qn

a ;l
i;n
a ; �

i;n
a �; ð86Þ

�iþ1;n
a � �i;n

a

Ds
¼ dH

d�a
½rn

a ;l
iþ1;n
a ; �i;n

a � ð87Þ
and relax until
max
k;l¼1;2

ðkliþ1;n
a � li;n

a k2; k�
iþ1;n
kla
� �i;n

kla
k2Þ 6 tol: ð88Þ
Though this iteration scheme costs twice as much per iteration as the one-step forward Euler scheme, we find that it is more
robust, converging for non-smooth chemical potential and elastic strain fields when the Euler method fails to converge.

Because the functionals in (83) are invariant under constant shifts in la, we enforce
Z
drli;n

a ðrÞ ¼ 0 ð89Þ
after updating li;n
a at each pseudo time-step Ds.

With an arbitrary initial guess l0;n
a and �0;n

a , the relaxation scheme given by (86) and (87) may require thousands of iter-
ations in order to converge within a desired tolerance. Furthermore, at each pseudo time-step si the two-dimensional inte-
grals over R2 appearing in Eqs. (20) and (21) must be computed at each point in the physical domain. Thus with a spatial
resolution of N � N points, the computational cost of just one pseudo time-step is O(N4).

In order to bring down the computational cost, we first improve upon the initial guess. Since we have solved the optimi-
zation problem at times tn�1 and time tn�2, we can use the mean-fields at these times to construct an extrapolated initial
guess:
l0;n
a ¼ 2ln�1

a � ln�2
a ; �0;n

a ¼ 2�n�1
a � �n�2

a : ð90Þ
With such a procedure the number of iterations required for convergence is reduced to O(10) when the time-step Dt is not
too large compared to the magnitude of the fluid velocity (for larger time-steps extrapolation provides a less accurate initial
guess and the relaxation scheme then requires more iterations in order to converge).

To bring down the computational cost associated with the integration required at each pseudo time-step, we first observe
that the integrands appearing in (20) and (21) decay exponentially. This implies that the error caused by integrating over a
finite region decreases exponentially as the domain of integration increases. Thus the integrals in (20) and (21) can be re-
stricted to a small region centered about r while maintaining accuracy. Additionally, we find that the spatial resolution used
in the integration can be reduced while still accurately resolving the operators ~qaðrÞ and ~raðrÞ.

As an example, we numerically approximate the integral of the function
e�ðx
2þy2Þ=4 � x2½1þ tanhð5 cosð8px=40Þ cosð8py=40ÞÞ�;
similar in form to the integrands in (20) and (21), over R2 using several spatial resolutions and domain sizes. In Table 1, we
observe that the error created by reducing the size of the domain of integration from 40 � 40 to 20 � 20 and increasing the
grid spacing by a factor of 2 is 0.033. Furthermore, the integrals in (20) and (21) are normalized to obtain ~qaðrÞ and ~raðrÞ,
which are O(1), and thus the error contribution from the integration to the mean-field approximation will be even smaller,
Oð10�3Þ, in the context of the optimization problem. We note that on a domain of size 40 � 40 using a 128 � 128 grid, a sec-
ond order finite difference approximation to the system of PDEs in the model creates an error on the order of
402=1282 ¼ 0:098 that is comparable to the error contributed from the integration under the L2-norm.
tion resolution comparison.

of integration Integration resolution Value of integral

32 � 32 29.92850069
64 � 64 29.96182141
128 � 128 29.96182142



Table 2
CPU time per pseudo time-step Ds of the non-linear optimization problem (averaged over a sample size of 5).

Domain of integration Resolution # of processors CPU time per proc.

20 � 20 32 � 32 32 1.3 s
40 � 40 128 � 128 32 14.7 s
40 � 40 128 � 128 1 396.2 s
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Even with the savings gained by reducing the resolution and domain of integration, the operators must still be evaluated
at every mesh point r in the physical domain. To bring the simulation time down further, we divide the physical domain into
32 equally sized pieces and evaluate the operators in parallel at each pseudo time-step (the number of processors was cho-
sen in order to balance the cost of mathematical operations and communication between processors). The savings of our
approach are illustrated in Table 2.

4. Numerical results

In this section we illustrate the effectiveness of the numerical method with several examples. In Section 4.1 we estimate
the time-step restriction of the semi-implicit method presented in Section 3.1. In Section 4.2 we provide simulation results
for a phase separating, symmetric melt in an initially quiescent flow. Finally, in Section 4.3 we investigate the effects of
asymmetry between the fluid components. All simulations in this work were carried out on 32 P655 nodes on Datastar at
the San Diego Supercomputer Center.

4.1. Time-step restriction of semi-implicit integration scheme

We consider a domain of size [40Rg, 40Rg] and use the initial conditions q0
aðx; yÞ ¼ 0:5þ 0:1 cosð8px=40RgÞ

cosð8py=40RgÞ, q0
b ¼ 1� q0

a , �0
a ¼ �0

b ¼ 0 (which determines r0
a and r0

b through Eq. (83)), and v0 ¼ 0 and the parameters
v1 ¼ 2, v2 ¼ 0:5, Rga ¼ Rgb ¼ 1, na0 ¼ nb0 ¼ 1 and sa ¼ sb ¼ 0:2. For the constants in the semi-implicit integration, we use
C1 ¼ 1, C2 ¼ 0:25, C12

3 ¼ 2, Cii
3 ¼ 1 and C4 ¼ 20. For the non-linear optimization problem, we set Ds ¼ 0:9, tol ¼ 10�3, and

compute all integrals over a region of size ½20Rg � 20Rg�. For the spatial resolutions 32 � 32, 64 � 64 and 128 � 128 we com-
pute the integrals (20), (21) using the resolutions 16 � 16, 32 � 32 and 32 � 32.

In Table 3, we list the maximum time-step size Dt for which the semi-implicit integration scheme can complete 200 time-
steps without diverging (we say that the scheme diverges if the density or diagonal components of the stress go below zero).
Here we observe a linear decrease in the size of the maximum allowable time-step as the spatial resolution is increased,
which is due to the first order derivative terms appearing in Eqs. (41)–(51). In contrast, due to the fourth order derivative
terms appearing in the equations for the density, explicit methods exhibit a quartic decrease in the size of the maximum
allowable time-step.

4.2. Phase separation of a symmetric melt of elastic dumbbells in an initially quiescent flow

In this example we use the random initial conditions q0
a ¼ 0:5þ 0:1U½�1;1� (where U is a uniform random variable),

q0
b ¼ 1� q0

a , �0
a ¼ �0

b ¼ 0 and v0 ¼ 0 and the parameters v1 ¼ 2, v2 ¼ 0:05, Rga ¼ Rgb ¼ 1, na0 ¼ nb0 ¼ 1 and sa ¼ sb ¼ 0:1.
For the constants in the semi-implicit integration, we use C1 ¼ 1, C2 ¼ 0:025, C12

3 ¼ 2, Cii
3 ¼ 1 and C4 ¼ 40. We discretize

the domain [0,40Rg] � [0,40Rg] with a grid of size 128 � 128 points and for the non-linear optimization problem we use
the pseudo time-step Ds = 0.9, tolerance tol ¼ 10�3, and evaluate the integrals (20) and (21) over the domain
[0,20Rg] � [0,20Rg] using a resolution of 32 � 32 gridpoints.

We integrate up to time t = 50 using the time-step Dt = 0.05 and observe the classic pattern of symmetric phase separa-
tion, with polymer a-rich phases and polymer b-rich phases separated by a thin transition layer (Fig. 1). In the contour plots
of the components of the stress, we observe less stress in vertically aligned regions and higher stress in horizontally aligned
regions, as the fluid deforms in order to align the polymers and ultimately minimize the free energy of the system.

For the above parameter values we find that the average number of iterations per time-step required to solve the non-
linear optimization problem is 15.97 and the total runtime is 11 h and 22 min. We note that the forward Euler method fails
to converge for time-steps as small as Dt ¼ 3� 10�3 (using the above parameters) and thus the runtime associated with an
Table 3
Resolution vs. maximum time-step.

Resolution 32 � 32 64 � 64 128 � 128

Max Dt 10.4 6.4 4.6



Fig. 1. Density plots at time t = 50 of qa (top, yellow corresponds to a rich regions), r11a þ r11b
(bottom left), and r12a þ r12b

(bottom right). In the bottom
left plot, yellow corresponds to higher (bulk) stress and is located in the horizontally aligned regions and the fluid interfaces, whereas red corresponds to
lower stress and is located in the vertically aligned regions. In the bottom right, yellow and red correspond to higher (shear) stress, located in the
horizontally aligned regions, and orange corresponds to lower stress, located in the vertically aligned regions. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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explicit method will be on the order of weeks for similar parameter values. Without the savings gained by efficiently solving
the non-linear optimization problem, the runtime will be even longer, on the order of months.
Fig. 2. Initial profile of the droplet given by Eq. (91). Yellow corresponds to the a-rich region. The initial area of the droplet is 146Rg2. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.3. Effects of asymmetry between the fluid components

4.3.1. Droplet deformation
Here we investigate the effects of asymmetry in the polymer stress and friction parameters starting with an elliptical

droplet. We use the initial conditions (plotted in Fig. 2),
Fig. 3.
and the
droplet
the righ
the dom
interfac
q0
a ¼ 0:5þ 0:45 � tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � ðx� 20Þ2 þ ðy� 20Þ2

q
� 9

� �
; ð91Þ
Contour plots at time t = 150 of qa (top), r11a þ r11b
(middle) and r12a þ r12b

(bottom). The left corresponds to na0 ¼ 10, nb0 ¼ 0:1, sa ¼ 10, sb ¼ 0:1
right corresponds to na0 ¼ 0:1, nb0 ¼ 10, sa ¼ 0:1, sb ¼ 10. On the left, due to the greater mobility and shorter stress relaxation time of the fluid in the
(polymer b), the droplet has formed a circular shape (minimizing the length of the interface) and has decreased in area from 146Rg2 to 101Rg2. On
t, the fluid in the droplet has less mobility and a longer stress relaxation time. Thus the droplet still has an elliptical shape and fills a larger area of
ain (130Rg2). In the plots of the stress, we observe that the droplet on the left has less bulk stress (middle left) and shear stress around the fluid

e (lower left) in comparison to the droplet on the right.
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q0
b ¼ 1� q0

a , �0
a ¼ �0

b ¼ 0 and v0 ¼ 0 and the parameters v1 ¼ 1:5, v2 ¼ 0:25 and Rga ¼ Rgb ¼ 1. In the first example we use
na0 ¼ 10, nb0 ¼ 0:1 and sa ¼ 10, sb ¼ 0:1 and in the second example we reverse the parameters, setting na0 ¼ 0:1, nb0 ¼ 10
and sa ¼ 0:1, sb ¼ 10. For the constants in the semi-implicit integration, we use C1 ¼ 10, C2 ¼ 1:25, C12

3 ¼ 20, Cii
3 ¼ 10, and

Ca
4 ¼ 0:4, Cb

4 ¼ 40 in the first example and Ca
4 ¼ 40, Cb

4 ¼ 0:4 in the second example. We discretize the domain
[0,40Rg] � [0,40Rg] with a grid of size 64 � 64 points and for the non-linear optimization problem we use the pseudo
time-step Ds = 0.9, tolerance tol ¼ 10�3, and evaluate the integrals (20) and (21) over the domain [0,20Rg] � [0,20Rg] using
a resolution of 32 � 32 gridpoints. For both examples we use the time-step Dt = 0.01 up to time t = 0.25 (in order to satisfy
the CFL condition) and Dt = 0.25 up to time t = 150.
Fig. 4. Contour plots of qa (yellow) at times t = 2900 (top), t = 3480 (middle) and t = 4000 (bottom). Initially, polymer b has greater mobility and nucleates
into droplets, even though it is the majority phase (top plot). Next the droplets grow and a network is formed by the polymer a molecules (middle plot).
Finally, the network breaks down and phase inversion occurs (bottom plot). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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In Fig. 3 we plot the droplets for each of the two examples at time t = 150, as well as the total polymer stresses r11a þ r11b

and r12a þ r12b
. On the left, the fluid in the droplet has smaller friction and stress relaxation parameters, resulting in the

inability of the droplet to store stress (compared to the droplet on the right) and a greater mobility of the fluid in the droplet.
Comparing the two examples, we observe that the droplet on the left forms the energy minimizing circular shape more
quickly, whereas the droplet on the right, due to its ability to store stress and smaller mobility coefficient, relaxes more
slowly. In the plots of the stress, we observe that the droplet on the left has lower bulk stress in the center of the droplet
(middle left plot) and shear stress surrounding the fluid interface (lower left plot) in comparison to the droplet on the right.

4.3.2. Viscoelastic phase separation
When strong asymmetries exist between the two components of the fluid, it has been observed that phase inversion is

possible [18]. Following [19], we modify the frictional terms and replace Eq. (23) with
n ¼ na0 � nb0

2
� tanh

1
0:01 � tanðpqa0Þ

� 1
0:01 � tanðpqaÞ

� �
þ na0 þ nb0

2
; ð92Þ
which generates strong asymmetry between the mobilities of the two fluid components. We use the random initial condi-
tions q0

a ¼ 0:3þ 0:001U½�1;1� ðqa0 ¼ 0:3Þ, q0
b ¼ 1� q0

a , �0
a ¼ �0

b ¼ 0 and v0 ¼ 0 and the parameters v1 ¼ 1:5, v2 ¼ 0:25,
Rga ¼ Rgb ¼ 1, na0 ¼ 1, nb0 ¼ 0:1, sa ¼ 1, sb ¼ 0:1. For the constants in the semi-implicit integration, we use C1 ¼ 10,
C2 ¼ 1:25, C12

3 ¼ 20, Cii
3 ¼ 10, Ca

4 ¼ 4, and Cb
4 ¼ 40. We discretize the domain [0,40Rg] � [0,40Rg] with a grid of size

64 � 64 points and for the non-linear optimization problem we use the pseudo time-step Ds = 0.9, tolerance tol ¼ 10�3,
and evaluate the integrals (20), (21) over the domain [0,20Rg] � [0,20Rg] using a resolution of 32 � 32 gridpoints.

We use the time-step Dt = 0.5 and in Fig. 4 we plot the density at times t = 2900, t = 3480 and t = 4000. Initially, due to the
greater mobility of the polymer b molecules, we observe the nucleation of polymer b molecules into droplets. Since polymer
b is the majority phase ðqb0 ¼ 0:7Þ, the droplets grow in size and a network is then formed by the polymer a molecules. Fi-
nally, as the droplets continue to grow, the network breaks down and phase inversion occurs.

5. Concluding remarks

We presented a model for an incompressible melt of elastic dumbbell polymers that connects the thermodynamic forces
acting on the polymers with the dynamics of the flow via a statistical field theory. We imposed a mean-field approximation
and then developed an efficient, semi-implicit numerical method for the resulting system of PDEs, as well as a procedure to
expedite the non-linear optimization component by exploiting the structure of the integrands and by a parallel iterative ap-
proach. The semi-implicit method effectively removes the high order stability constraints associated with explicit methods,
allowing for much larger time-steps to be taken. Additionally, the computational cost associated with the non-linear opti-
mization problem was reduced by several orders of magnitude, allowing simulations that would normally take months to
be completed in just a few hours. We believe that these computational advances will pave the way for studies of the coupled
flow and microstructure of more realistic multi-bead models of inhomogeneous polymeric fluids.
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