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Abstract. Opioid addictions and overdoses have increased across the
U.S. and internationally over the past decade. In urban environments
overdoses cluster in space and time, with 50% of overdoses occurring
in less than 5% of the city and dozens of calls for emergency medical
services being made within 48 hour periods. In this work, we introduce
a system for early detection of opioid overdose clusters based upon the
toxicology report of an initial event. We first use drug SMILES, one hot
encoded molecular substructures, to generate a bag of drug vectors corre-
sponding to each overdose (overdoses are often characterized by multiple
drugs taken at the same time). We then use spectral clustering to gener-
ate overdose categories and estimate multivariate Hawkes processes for
the space-time intensity of overdoses following an initial event. As the
productivity parameter of the process depends on the overdose category,
this allows us to estimate the magnitude of an overdose spike based on
the substances present (e.g. fentanyl leads to more subsequent overdoses
compared to Oxycontin). We validate the model using opioid overdose
deaths in Indianapolis and show that the model outperforms several re-
cently introduced Hawkes-Topic models based on Dirichlet processes.
Our system could be used in combination with drug test strips to alert
drug using populations of risky batches on the market or to more effi-
ciently allocate naloxone to users and health/social workers. †‡

Keywords: Opioid Overdose · Hawkes Process · Embedding · Spectral
Clustering · Topic Model · Drug Mover’s Distance

1 Introduction

The United States is experiencing an overdose epidemic with more than a half
million drug overdose deaths since 2,000 and over 70,000 drug overdose deaths
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‡Corresponding author.
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in 2017 alone [43]. A majority of these deaths have been opioid-related over-
doses; however, the role of opioids has varied dramatically across three waves
of the epidemic, each resulting in increasing death rates [2]. This first wave be-
gan in the 1990s and was driven by prescription opioid-related deaths [3]. The
reduced availability of these prescription medications is said to have resulted
in the second wave of the epidemic, which began in 2010, and was driving by
heroin-related deaths [3, 41, 45]. The third wave started in 2013 and has largely
been driven by illicit fentanyl, a synthetic opioid that is 50 to 100 times more
potent than morphine [12]. National estimates suggest that in 2016 nearly half
of opioid-related deaths contained fentanyl [16], and there is evidence showing
that fentanyl is being mixed into heroin and cocaine which is likely contribut-
ing overdose deaths involving these substances [17, 29]. Recent research has also
shown that opioid overdoses cluster in space and time, where over half of opioid
overdose deaths may occur in less than 5% of a city [1].

As the overdose epidemic has progressed researchers and policy makers have
revealed shortcomings in official data sources, namely vital records data. One
limitation is that vital records data rely on the International Classification of
Diseases, 10th Revision (ICD-10) codes which do not record the specific sub-
stances related to an overdose fatality [6, 15, 27, 48]; for example, there is no
ICD code for fentanyl. Another limitation though has been the undercounting of
opioid-related fatalities as 20 to 35 percent of drug overdose deaths are unspeci-
fied [42], meaning no substance was indicated as a primary or contributing cause
of death. Moreover, rates of undercounting vary geographically as they are the
result of state policies for death investigation procedures [42]. While researchers
have developed measures to adjust for these limitations [42], better data collec-
tion systems are being implemented [47], and state policies are changing [11], it
remains clear that we lacked sufficient data to quickly detect and identify the
substances driving this overdose epidemic at the national level. However, one
source of local information that can be used to address these gaps are toxicology
results collected as part of an overdose death investigation. In the present study,
we use a robust toxicology dataset from Marion County, Indiana [Indianapolis]
that were collected as part of the CDCs Prevention for States funding initia-
tive [28, 37, 38]. In the toxicology dataset, we observe spatio-temporal clustering
patterns [1]. These shift patterns demonstrate that overdose events concentrate
within micro places in a short time window and shift through time, which mo-
tivates our present work.

Our goal in the present work is to develop a statistical framework for mod-
eling and prediction of opioid overdose clusters in space and time, leveraging
information provided in the toxicology report of the initial overdose in the clus-
ter. An overview of our proposed system, SOS-EW, is given in Figure 1. We
use a Hawkes process to model overdoses as a branching process. Each event
may trigger offspring events nearby in space and time. The branching ratio of
the process, determining the average number of offspring, depends on the drugs
contained in the toxicology report of each parent event in the branching process.
To reduce the dimension, we use spectral clustering with earth mover’s distance
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Fig. 1: Overview of the SOS− EW system for early warning of opioid spikes. The initial
overdose toxicology report shows fentanyl, benzodiazepine, and heroin present. Each
drug is vectorized using SMILES and the event is assigned an overdose category using
spectral clustering based on earth mover’s distance of the drug vectors (“drug mover’s
distance”). The increase in the intensity of the Hawkes process is determined by the
category and allows for the prediction of an opioid overdose spike, those events triggered
in the branching process by the initial overdose.

on bags of drug SMILES [14] vectors corresponding to each toxicology report
(we refer to in the rest of the paper as “drug mover’s distance”). The resulting
method outperforms existing Dirichlet-based Hawkes topic models in the task of
early warning of opioid overdose spikes (clusters) based on an initial event and
its toxicology report.

The outline of the paper is as follows. In Section 2, we review related work
on point process models of event clustering in urban environments and topic
point processes for event data with high dimensional marks. In Section 2, we
then present the details on our proposed method including clustering of the
toxicology reports and the spatio-temporal Hawkes process. In Section 3, we
provide details for several baseline models we use to benchmark SOS-EW and in
Section 4 we present the results of our numerical experiments. We then discuss
the implications of our results for practice in Section 5.

2 Method

SOS− EW system for early warning of opioid spikes is mainly comprised of the
following two components:

1. Overdose category clustering;
2. Marked spatio-temporal Hawkes process kernel estimation and simulation.

Given a toxicology report, overdose events are first clustered into several over-
dose categories through spectral clustering [34]. The distance between overdose
events in spectral clustering is measured based on earth mover’s distance [40] of
drug vectors which characterize drug’s two-dimensional molecular structure (in
particular we use SMILES, one hot encoded molecular substructures [14]). Drug
overdose events over continuous time are then modeled through spatio-temporal
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Hawkes processes. We estimate the productivity for each category based on his-
torical overdose events and simulate future events to generate a short ranked
list of hotspots containing overdose spikes. Figure 1 presents an overview of the
SOS− EW system. In Section 2.1, we review related work on spatial self-exciting
point processes, along with topic point processes. In Section 2.2, we present the
details of our method for overdose event clustering and we introduce our ap-
proach for the estimation and simulation of spatio-temporal Hawkes processes
in Section 2.3.

2.1 Related Work

Self-exciting (Hawkes) point processes have been used to model space-time clus-
tering in urban crime patterns [32] and Hawkes process-based learning to rank
algorithms were recently a top-performing solution in the 2017 NIJ Crime Fore-
casting competition [31], which focused on ranking the top crime hotspots in a
city according to short-term crime risk. Other point process models, for example,
log-Gaussian Cox Processes, can model spatial diffusion of events and have also
proven accurate at modeling crime hotspots [8, 44]. More recently, self-exciting
point processes have been used to model clustering in emergency call data [25].
In more extreme security settings spatio-temporal point process models for event
prediction have been applied to conflict [51] and terrorism [10] datasets.

In the above studies, the models either only used as input the spatial coor-
dinates and time of the events, or in some cases an additional low-dimensional
(< 10) event category. However, event data often is accompanied by a high di-
mensional mark, for example, text data, imagery, sensor data, or in our case a
133 dimensional vector indicating drugs in a toxicology screen.

Recent work in the machine learning and information retrieval literature has
focused on extending temporal and network-based Hawkes processes to handle
text information in the events [21, 4]. Dirichlet Hawkes processes [4, 49] have
been introduced for this purpose, where document clustering is jointly learned
with a temporal Hawkes process. In the network setting, Hawkes processes have
been used to model coupled information and event diffusion on networks [5].
However, these studies have not dealt with spatio-temporal data, which is critical
in studying the spread of opioid overdoses.

Our work offers several contributions to the above-related literature. First, we
investigate the applicability of existing Hawkes-topic models in the spatial setting
and then we improve upon the accuracy of these models in several prediction
tasks related to early warning of opioid overdose clusters. Second, we introduce
a novel clustering method for drug overdoses based upon drug mover’s distance.
Related to word mover’s distance [20] that has shown higher coherence than
LDA based topic models, we believe our drug mover’s distance-based spectral
clustering may be useful in a variety of applications where sets of molecules need
to be compared and clustered.
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2.2 Overdose Categorization

To categorize overdose events through clustering, we first measure the similar-
ity between two overdose events in terms of a “distance” based on the drugs
involved in the events. Each event consists of a mark indicating one or more
drug substances found in the victim’s system. We denote an event i containing
m drug substances as Ei = {d1,d2, · · · ,dm}, where drug m is denoted as dm.
Each drug is represented by a set of 2D substructures, i.e., d ∈ {s1, s2, · · · , sk},
where the substructure k is denoted as sk. The distance between each drug event
is then calculated by earth mover’s distance [40].

Earth mover’s distance (EMD) is a metric to measure a distance between two
distributions. EMD is based on the minimal cost that must be paid to move one
distribution into the other. Given two events, Ep and Eq, with m and n drugs,
respectively, we want to find a transportation flow F ∈ Zm×n2 , where Z2 = {0, 1},
that minimizes the overall cost:

min

m∑
i=1

n∑
j=1

FijCij ,

subject to

n∑
j=1

Fij ≤ 1 1 ≤ i ≤ m,

m∑
i=1

Fij ≤ 1 1 ≤ j ≤ n,

m∑
i=1

n∑
j=1

Fij ≤ min(m,n).

(1)

Cij is the cost for moving di to dj . We define such cost as Jaccard distance [23]
and it can be calculated by dividing the difference of the sizes of the union and
the intersection of two sets of substructure by the size of the union:

Cij =
|di ∪ dj | − |di ∩ dj |

|di ∪ dj |
. (2)

Such an optimization problem 1 can be further solved through the transportation
simplex method [26]. Once the optimal transportation flow is found, the EMD
between event Ep and Eq is defined as the resulting overall cost normalized by
the total transportation flow:

EMD(Ep,Eq) =

∑m
i=1

∑n
j=1 FijCij∑m

i=1

∑n
j=1 Fij

. (3)

After calculating the EMD between each overdose events, we then construct
a similarity matrix (i.e., adjacency matrix). The similarity between Ep and Eq

is calculated using a radial basis function kernel, i.e., exp
( −EMD(Ep,Eq)2

2ε2

)
.

To categorize drug overdose events into different clusters, we apply spectral
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clustering [46] on all the events. The spectral clustering algorithm takes in
the adjacency matrix and uses the eigenvalues and eigenvectors from the adja-
cency matrix of the events to perform dimensionality reduction before clustering.

Fig. 2: Gephi visualization of graph used for spectral
clustering (edges correspond to adjacency weight
greater than .9) and the most frequent drugs in each
of the 5 overdose categories.

Each overdose event is then
assigned to a category u.
Therefore, each event Ei =
(ti, xi, yi, ui) consists of four
pieces of information: ti is
the timestamp of the date of
death (D.o.D) of the victim;
xi and yi are the latitude and
longitude of where the vic-
tim is found; and ui is the
drug overdose category. Our
approach to overdose catego-
rization can seamlessly inte-
grate the molecular substruc-
ture similarities across differ-
ent drug overdoses and pro-
duce more pharmacokinetic-
aware categories. Figure 2
shows the top 5 overdose cat-
egories, along with the most frequent drugs in each category, computed using
our drug mover’s distance-based spectral clustering approach.

2.3 Spatio-temporal Hawkes Process

Clustering in space-time drug overdose event data may occur for a variety of
reasons; for example, an increase in the prevalence of a new street drug may
appear in a neighborhood leading to a spike in overdoses; or a particular batch
of drugs may contain a higher than usual amount of a dangerous substance, for
example, fentanyl. Motivated by the observed clustering of overdose data [1],
we further characterize drug overdose events through a cross-exciting spatio-
temporal Hawkes process [50] that models the contagiousness of events across
overdose categories (computed using DMD spectral clustering).

Given a drug overdose sequence {Ei}Ni with N events, we characterize a
multivariate spatio-temporal Hawkes process through the following conditional
intensity function for each category u:

λu(x, y, t) = µu(x, y) +
∑
t>ti

Kuiug(x− xi, y − yi, t− ti). (4)

In Equation (4), the background rate µu(x, y) for each category is assumed to be
a constant in time, while inhomogeneous in space. The historical events increase
the likelihood of the near-future events through the spatio-temporal triggering
density function g. K(ui, uj) = Kui,uj

is the productivity (or triggering) matrix
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to quantify the self or cross-exciting impact of the events associated with category
ui on the subsequent events in the category uj . Specifically, Kui,uj

denotes the
mean number of events in process uj that are triggered by each event in the
process ui.

We introduce a parametric form of the triggering density with an exponential
function in time and a Gaussian density in space. These choices allow for a
weighted sample mean estimation of the parameters in the maximization (M)
step of expectation-maximization (EM) based maximum likelihood estimation
(MLE) [30].

Our kernel density-based background rate and triggering density function
take the following form:

µu(x, y) =

N∑
i=1

βuiu

2πη2Tspan
× exp

(
− (x− xi)2 + (y − yi)2

2η2

)
,

g(x, y, t) = ωexp(−ωt)× 1

2πσ2
exp(−x

2 + y2

2σ2
),

(5)

where Tspan denotes the time spanned through the whole training dataset; βuiu

measures the extent to which events in process ui contribute to the background
rate in the process uj ; ω controls how fast the rate λu(x, y, t) returns to its
baseline level µu(x, y) after an event occurs; and η and σ dictate the spreading
scale of the triggering effect in space.

We perform the M step of the EM-type algorithm following the framework of
Algorithm 1 in [50] to estimate the parameters. We use the “optimal” parameters
from the previous M step to update the latent variables and alternately iterate E
and M step. After parameter estimation, we utilize the branching structures [52]
of self-exciting point processes to simulate self and cross-exciting events (See
Algorithm 3 in [50]) for the next T days for 1, 000 times. The simulated events
are denoted as Ê = (t̂, x̂, ŷ, û).

To make recommendations for early warning of overdose spikes, we generate
a short ranked list of hotspots in the domain of interest. We first partition the
domain of interest into N×N fine-grained grid cells by dividing the latitude and
longitude span into N parts with equal length. Based on the latitude and longi-
tude (i.e., x̂ and ŷ) from the simulated events, we calculate the average number
of the simulated events for each grid cell from 1, 000 repeated simulations. We
denote the average number of the simulated events in the ith and jth grid in
terms of latitude and longitude as χ(i, j). Finally, we sort the grids according to
the average number of the simulated events in descending order and retain the
top-N grids as the recommended short ranked list.

3 Comparison Methods

We compare our model with several state-of-the-art methods including the fol-
lowing: Non-parametric temporal Hawkes Processes; Spatio-temporal univariate
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Hawkes Processes; and Dirichlet Hawkes Processes that learn the category as-
signment while estimating the intensity function. None of the existing point
process methods jointly learn the spatio-temporal self and cross-exciting density
together for different overdose categories based on the drug substance struc-
ture; methods either exist for spatio-temporal point processes or for time-only
topic point processes, but not both. The details of our implementation for these
baseline methods are presented in the following sections.

Non-parametric Hawkes Processes:SimpHP [24]
Our first baseline model utilizes a non-parametric Hawkes process [24] that

takes a series of time stamps and then uses a penalized MLE to simultane-
ously estimate the background rate µ(t) and triggering kernel g(t) without prior
knowledge of their form. Given a set of overdose events, we partition the training
dataset into N ×N subsets according to which fine-grained grid cell they belong
(as defined in Section 2.3). Each subset of events corresponds to an independent
Hawkes process. Once the estimation is done, the simulation for the next T inter-
val is done through thinning [35]. Each Hawkes process is first simulated 1, 000
times and the average number of simulated events is calculated. The top-N grids
cell with the largest average number of simulated events is recommended. We
denote this baseline method as SimpHP.

Spatial-temporal Hawkes Processes:SpatHP [50]
We compare SOS− EW with a sub-model that only uses the geolocation and

time stamps for estimation, without clustering events into different categories
(univariate). The model estimation and recommendation follow the same frame-
work in Section 2.3. Such a baseline model is denoted as SpatHP.

Dirichlet Hawkes Processes:TopicHP [4]
The Dirichlet Hawkes process [4] is a random process which takes into account

both text information from documents and temporal dynamics of their arrival
pattern to cluster the document streams. The model is estimated through an
online inference algorithm that jointly learns the pattern of the clusters and the
parameters of the Hawkes process for each cluster. To adapt to this model, we
view each overdose event as a document and each drug as a word. Spatial infor-
mation is integrated into each event by adding a grid cell index as an additional
word. After model estimation, we then use thinning [35] based simulation and
average the number of events for each grid cell and topic (over 1, 000 simulations)
to generate a recommendation of the top-N grid cells with the most number of
simulated events.

4 Experiments

4.1 Data

We analyze a toxicology dataset from Marion County, Indiana that was col-
lected as part of the CDCs Prevention for States funding initiative [28, 37, 38].
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The dataset contains toxicology reports of 1,489 overdose death events in Indi-
anapolis, Indiana, U.S.A. from 2010 to 2016. Each overdose event includes the
date of death (D.o.D) of the victim and the geolocation (latitude and longitude)
of where the victim was found. In addition, every event also contains forensic
toxicology testing results that screen for 164 drug substances. A binary indi-
cator represents whether a specific drug substance was found in the victim’s
body. In our analysis, we restricted to a subset of 133 drugs whose 2D chemical
structure representation can be found in the chemical molecules database, Pub-
chem [19], for further feature generation. We also restricted our analysis to the
1,425 overdose events that include geolocation information and occurred within
the city of Indianapolis boundary, where the latitude ranges from 39°37’58.8”N
to 39°55’30.3”N and the longitude ranges from 87°06’41.1”W to 85°56’18.7”W.
Table 1 presents the statics of the pruned dataset. Figure 4 presents the example
of some overdose events.

Table 1: Statistics on Overdoes Event

start date 01-14-2010
end date 12-30-2016

#event 1,425

#d 6.3698

#entd 68.2481

In this table, “#event” represents the
number of events in the toxicology re-
port; “#d” represents the average num-
ber of drug substances in each event;
and “#entd” is the average number of
events involved in each drug.

2010 2011 2012 2013 2014 2015 2016
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Fig. 3: Number of Events per Year

Features for each drug are extracted by identifying its molecular substruc-
ture fingerprints. Specifically, each drug is represented by a set of substructures
s (i.g., d ∈ {s1, s2, · · · , sk}). We further used RDKit [22], open-source software
that allows us to search the substructures based on 2D chemical structures rep-
resentation, to generate a feature vector of dimension 1,024 for each drug. The
pruned dataset is then used for model evaluation.

4.2 Evaluation Protocols and Metrics

The domain of Indianapolis covered by the pruned dataset is first partitioned
into N ×N grid cells by dividing the latitude and longitude span into N parts
with equal length in each direction. For each time interval tth, we recommend
a ranked list of grid cells based on how likely those grid cells are to have over-
dose events in the near future, using the history of the process up to tth time
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Initial Event
Alcohols, Ethanol, Benzodiazepine, Fentanyl

Triggered Events
1. Benzodiazepine, 6_MAM, Heroin_from_combo, 
Morphine, Codeine, Hydrocodone, Hydromorphone

2. Alcohols, Ethanol, Benzodiazepine, 6_MAM, 
Heroin_from_combo, Morphine, Codeine, 
Oxycodone, Oxymorphone

3. THC, Carboxy_THC, Oxycodone, Oxymorphone, 
Hydromorphone

4. Benzodiazepine, 6_MAM, Heroin_from_combo, 
Cocaine, Morphine, Codeine, Fentanyl, Oxycodone, 
Oxymorphone

Fig. 4: An illustration for an initial event and its triggered events in one of the categories
(i.e., one of the Hawks processes). The initial overdose event marked in triangle symbol
consists of four drug substances and it triggered four neighboring events consisting of
different number of drug substances respectively.

interval. The performance is then evaluated through walk forward optimization
[30]. Specifically, in our experimental setting, we first train our model over a
fixed amount of the most recent historical events, which is 255 events (the num-
ber of events in the first two years). We then test the model on the next time
period starting on 01/01/2012 and report the performance. Finally, the overall
performance is the average from all the time periods that we have tested.

At each time interval T , models recommend a ranked list of size K for po-
tential overdose events. In our experimental setting, we set T as 5 days and
partition the domain of interest into 100 × 100 grid cells. The time window is
consistent with the time scale on which police and health services can respond
and the grid cell size is similar to those used in field trials of predictive polic-
ing [33]. The ranking performance is evaluated through normalized discounted
cumulative gain at K (NDCG@K), which is a measurement of ranking quality
and commonly used in information retrieval. NDCG@K is calculated by nor-
malizing discounted cumulative gain (denoted as DCG@K) with ideal DCG@K
(denoted as IDCG@K). The definition are as follows:

DCG@K =

K∑
i=1

2reli − 1

log2(i+ 1)
, NDCG@K =

DCG@K

IDCG@K
, (6)

where reli is the ith relevance value of the ith grid in the ranked list r; IDCG@K
is the ideal DCG@K when the ranked list r is perfectly ranked based on its rel-
evance values; and then we define relevance value reli as the number of overdose
events that happen in the ith grid cell in the ranked list r and tth time interval.

In a certain time interval, a spike of overdose events may occur. To evaluate
our model’s ability to forecast future spikes, we first define an event spike at the
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tth time interval in a grid cell (i, j) as follows: If the total number of events in

the neighboring cells between the (t− 1)
th

and (t+ 1)
th

intervals is more than a
threshold, then we consider that there is an event spike in (i, j) grid within these
time intervals. The set of grids with an event spike is defined as the following:

s =
{

(i, j, t)
∣∣ i+w∑
î=i−w

j+w∑
ĵ=j−w

t+1∑
t̂=t−1

χ(̂i, ĵ, t̂) ≥ ξ
}

(7)

where χ(i, j, t) is the count of events in grid cell (i, j) and time interval t, w is the
spatial window size defining how many neighboring cells we should consider; and
ξ is the spike threshold: we set ξ = 2 (for w = 2 and 4) and ξ = 10 (for w = 10
and 15) in our evaluation setting. With larger w and ξ, more gird cells will be
considered to have an event spike. We choose w and ξ to ensure a reasonable
amount of event spikes for further evaluation while an event spike includes a huge
amount of overdose events. We adopt modified reciprocal hit rank [36], precision
and recall at different ranked list size K, denoted as MRHR, Prec, and Rec to
evaluate the performance. MRHR is a modified version of average reciprocal hit
rank (ARHR), which is feasible for ranking evaluations where there are multiples
relevant items (i.e., multiple spikes events), and it is calculated as the following:

MRHR =
1∣∣ s ∣∣

K∑
i=1

( hiti
ranki

)
,

where hiti =

{
1 if ri ∈ s

0 if ri, /∈ s
, ranki =

{
ranki−1 if hiti−1 = 1

ranki−1 + 1 if hiti−1 = 0,

(8)

where each hit is rewarded based on its position in the ranked list. Prec and
Rec are commonly used to evaluate the performance in recommendation system.
Prec evaluates how precisely the model can predict for future spike events while
Rec measures the ability of retrieving spikes. We also evaluate average precision,
denoted as APC, to account for both precision and recall without choosing K:

Prec =

∣∣ s ∩ r
∣∣∣∣ r ∣∣ , Rec =

∣∣ s ∩ r
∣∣∣∣ s ∣∣ , APC =

∑
{k:1,··· ,K|rk∈s} Prec@k

|s ∩ r|
. (9)

4.3 Experimental Results

Table 2 presents the overall performances on overdose spikes prediction under
different breadth definition of spike events (Equation 7). Our SOS− EW system
consistently outperforms other baseline methods by a large margin in terms of
MRHR, Prec, Rec, and APC. MRHR is used to evaluate the ranking qual-
ity while Prec, Rec, and APC evaluate the retrieval for events spikes. This
shows our proposed method not only can successfully recommend the regions
with potential event spikes considering the ranking position but it can also pre-
cisely generate a short ranked list for those event spikes precisely. As the rank-
ing list size increases, performances of MRHR remains similar after MRHR
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Table 2: Overall Performance on Different Spike Window Size w

w mdl
MRHR Prec Rec

APC
@1% @3% @5% @1% @3% @5% @1% @3% @5%

2

SOS− EW .0172 .0188 .0191 .0277 .0174 .0124 .2534 .5038 .6110 .0451
SimpHP .0088 .0089 .0090 .0034 .0019 .0018 .0289 .0496 .0842 .0103
SpatHP .0017 .0021 .0023 .0036 .0029 .0025 .0375 .1129 .1590 .0043
TopicHP .0080 .0082 .0082 .0130 .0085 .0055 .1258 .2386 .2748 .0125

4

SOS− EW .0218 .0236 .0240 .1091 .0724 .0555 .2690 .5196 .6699 .1187
SimpHP .0059 .0060 .0060 .0126 .0070 .0060 .0279 .0475 .0660 .0118
SpatHP .0016 .0018 .0020 .0114 .0111 .0112 .0274 .0784 .1294 .0102
TopicHP .0082 .0089 .0090 .0474 .0315 .0205 .1089 .2226 .2434 .0250

10

SOS− EW .0219 .0254 .0259 .2000 .1526 .1229 .1911 .6734 .8554 .1851
SimpHP .0029 .0031 .0032 .0189 .0119 .0111 .0128 .0662 .0854 .0125
SpatHP .0003 .0007 .0007 .0167 .0181 .0193 .0109 .0691 .1025 .0151
TopicHP .0096 .0097 .0098 .0856 .0548 .0360 .1974 .2868 .3121 .0335

15

SOS− EW .0620 .0718 .0726 .4387 .3275 .2549 .3234 .6470 .8025 .3644
SimpHP .0070 .0072 .0072 .0445 .0291 .0254 .0336 .0526 .0676 .0301
SpatHP .0016 .0019 .0020 .0516 .0506 .0503 .0220 .0746 .1119 .0387
TopicHP .0083 .0091 .0092 .1739 .1212 .0802 .1035 .2081 .2267 .0622

The column “mdl” corresponds to different models. The best overall performance is bold.

@3%; Prec decreases while Rec increases due to the natural trade-off between
these two metrics. SOS− EW estimates the model parameters and makes pre-
dictions specifically for different overdose categories compared to SpatHP which
estimates the same parameters for all event data aggregated together. This indi-
cates that strategically clustering overdose events based on the drug molecular
structure can achieve better performances than the model which solely relies
on spatio-temporal information. TopicHP jointly learns the clustering structure
and model parameters and it can be viewed as a competitive baseline. How-
ever, only the drug distribution in each event is taken into account and drugs’
chemical structure is not included in the model training. This may explain why
TopicHP falls short of spikes recommendation metrics compared to SOS− EW but
is still better than other baselines. Overall, SOS− EW leverages the information
from geo-locations, event triggering dynamics, and drugs’ high level physical and
chemical properties based on 2D structures altogether and precisely makes the
recommendations for future overdose event spikes.

Table 3: Overall NDCG Perfor-
mance

mdl @1% @3% @5%

SOS− EW .0322 .0637 .0842
SimpHP .0191 .0236 .0265
SpatHP .0092 .0179 .0262
TopicHP .0492 .0733 .0750

The column “mdl” corresponds to
different models. The best overall
performance is bold.

Table 3 presents the overall model per-
formances on NDCG when only evaluating
each models ability to rank grid cells (equiv-
alent to ω = 0). The ranking quality increases
as the size of the ranked list grows larger
(i.e., from 1% to 5%). Our proposed SOS− EW

outperforms the second best baseline method
TopicHP by 12.27% at NDCG @5%, how-
ever, TopicHP is the top performing model
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at 1% and 3%. These results indicate that
for the very highest risk cells, spatial diffu-
sion may play less of a role and TopicHP and
SOS− EW have similar performance. However, for flagging neighborhoods instead
of individual cells for spikes, SOS− EW is superior due to its ability to model
spatial diffusion of risk.

5 Implications for Practice

Results from our proposed system can be translated into more effective social
service delivery and intervention programming. When flagging the top 1% of
predicted spikes defined in neighborhoods of approximately O(1km2) in size and
5 days in length, the method captures around 25% of opioid spikes. These spa-
tial and temporal scales are similar in size to those used in predictive policing
[33] and by efficiently predicting the geographic diffusion of opioid-related tox-
ins (such as fentanyl), social service programs and first responders can develop
dynamic programs to best target areas where people face the highest risk of
overdose. Further research is needed to verify whether or not the results found
in Indianapolis in this study extend to other cities and rural areas.

Studies have revealed polydrug patterns whereby fentanyl is being detected
alongside cocaine and methamphetamines, which is contributing to overdose
deaths involving these substances [17, 29]. Given the nature of this supply-side
poisoning among illicit drugs, the most feasible approach may be to empower and
provide persons who used drugs with the ability to test these substances. Drug
testing technologies (i.e., fentanyl test strips) allow drug users to understand
whether the drugs they use are contaminated with lethal substances, such as
fentanyl, which can allow them to adjust behaviors and prevent a potentially
fatal overdose [13]. Furthermore, the average of dispatch and response time for
emergency medical services (EMS) personnel to arrive when an overdose event
is reported is seven minutes on average ‡ and the time to results of many drug
test strips is usually less then minutes nowadays. Therefore, our system can
make a prediction in a short time so that the health/social workers can react
accordingly. More research is needed to extend the method in this paper, that
utilizes toxicology reports, to the application of drug test strips and other drug
testing tools (which may not be a thorough as a coroner’s report).

Public health services can deploy syringe services, such as retractable syringes
or exchange programs, that have been shown to reduce fatal opioid use [18, 9].
From a policing perspective, officers can be equipped with nasal naloxone (or
Narcan) within high-risk opioid locations to reduce the likelihood of death from
an opioid overdose [7, 39].
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