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NUMERICAL SOLUTIONS OF THE COMPLEX LANGEVIN
EQUATIONS IN POLYMER FIELD THEORY∗
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Abstract. Using a diblock copolymer melt as a model system, we show that complex Langevin
(CL) simulations constitute a practical method for sampling the complex weights in field theory
models of polymeric fluids. Prior work has primarily focused on numerical methods for obtaining
mean-field solutions—the deterministic limit of the theory. This study is the first to go beyond Euler–
Maruyama integration of the full stochastic CL equations. Specifically, we use analytic expressions
for the linearized forces to develop improved time integration schemes for solving the nonlinear,
nonlocal stochastic CL equations. These methods can decrease the computation time required by
orders of magnitude. Further, we show that the spatial and temporal multiscale nature of the system
can be addressed by the use of Fourier acceleration.
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1. Introduction. Systems with mesoscopic ordering on scales of 1 nm to 1 μm
have proven vital to the development of novel polymeric materials. As modeling on
these length scales is not tractable with either molecular or macroscopic simulations,
there has been much interest in using techniques of statistical field theory to build
coarse-grained models of polymers that self-assemble on the mesoscale. In this ap-
proach, a particle-based model is transformed into a classical statistical field theory in
which particle-particle interactions are replaced with particle-field interactions. Thus
the degrees of freedom associated with individual particles are exchanged for those
associated with a number of fields [12]. One benefit of this transformation is that
the field theory lends itself well to various approximation schemes, most importantly
a mean-field approximation that produces the well-known equations of polymer self-
consistent field theory (SCFT). Physically, this approximation makes the assumption
that there is a single “mean-field” configuration (a saddle point for the complex plane)
that dominates the functional integrals comprising the partition function of the field
theory—effectively ignoring fluctuations about the saddle point configuration. This
mean-field SCFT approach can be justified by a formal steepest descent procedure
for concentrated polymer fluids at high molecular weight and represents a significant
simplification over the full theory. While still challenging numerically, the SCFT
field equations have been used successfully to study a plethora of systems, such as
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1348 LENNON ET AL.

block and graft copolymers, concentrated polymer solutions, thin polymer films, and
polymer blends and alloys [23, 25, 24, 33].

The natural limitations of SCFT are evident for a variety of systems. For example
in the case of melts, the mean-field approximation breaks down for block copolymers
near their order-disorder transition. In these cases, field fluctuations about the rel-
evant saddle points cannot be neglected, as they make important contributions to
thermodynamic properties and self-assembly behavior. For example, in symmetric
diblock copolymer melts, the fluctuations not only suppress the order-disorder tem-
perature but actually change the nature of the transition from continuous (second
order) to discontinuous (first order) [14].

The limitations of SCFT are even more acute in dilute and semidilute polymer so-
lutions, where strong excluded volume correlations (manifested by short-ranged field
fluctuations) lead to significant departures from the predictions of mean-field theory
for both structural (e.g., scattering functions) and thermodynamic (e.g., osmotic pres-
sure) properties [9]. For this broad and technologically important class of polymeric
liquids a quantitative treatment necessitates a return to the full field theory model
and an alternative numerical approach.

Numerical investigations of the full field theory require an efficient method for
importance sampling of the phase space spanned by the field variables. That is, the
methods of simulating these systems must be designed to sample the areas in phase
space which contribute the most to the properties of the system, rather than uni-
formly investigate every point in phase space. In particle-based models of classical
equilibrium statistical mechanics, the Hamiltonian of the system is purely real, so
such sampling can be effectively done with standard stochastic techniques such as
Monte Carlo or real Langevin simulations. The corresponding polymer field theories,
however, are characterized by complex Hamiltonians for which purely real sampling
techniques are ill-suited. In particular, rapid phase oscillations associated with these
methods lead to extreme difficulties when simulating large systems (the so-called “sign
problem”) [10, 12]. One method that has been shown to successfully bypass the sign
problem for systems with a complex Hamiltonian is the complex Langevin (CL) tech-
nique [19, 29]. The method involves extending the field variables to the complex plane
and writing an asymmetric stochastic Langevin dynamics for the real and imaginary
components of the field. For select classes of complex Hamiltonians it can be proven
that if the CL stochastic process converges to a steady state, then field configurations
obtained by integrating the CL equations under stationary conditions can be used
to importance sample the complex distribution of the full theory [17, 21]. While no
rigorous proof exists that the CL process has a stationary statistical distribution, this
requirement can be tested numerically during the course of a simulation.

The CL approach was first applied to a field theory model of polymeric fluids
by Ganesan and Fredrickson [16]. Beyond this initial study of a model for block
copolymer melts, it was used to investigate models of semidilute polymer solutions [2]
and ternary polymer alloys [11]. Despite these promising results, the CL equations are
numerically challenging stochastic differential equations that combine stiffness with
nonlocal and nonlinear force terms. Prior to this work, the numerical algorithms
utilized for CL simulations have been explicit, low order time integration schemes
that suffer from poor stability and accuracy. This has limited the size and scope of
systems for which field-theoretic polymer simulations can be applied and has been a
major impediment to widespread adoption of the technique.

In this article, we develop semi-implicit strategies for integrating the CL equa-
tions that dramatically improve both stability and accuracy over low order explicit
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schemes. We further generalize the CL equations to include colored noise and dis-
sipation and exploit this generalization to affect Fourier acceleration. Beyond the
immediate application of our improved algorithms to a broad class of polymer field
theory models, we expect that our methods can be extended to CL simulations in
very different physical contexts including correlated electron physics, time-dependent
quantum chemistry, quantum chromodynamics, and lattice gauge theory.

The outline of the article is as follows: in section 2 we describe our model system
of a diblock copolymer melt and present the CL equations. We outline the numerical
methods used to solve the stochastic CL differential equations obtained by spectral
collocation with a plane wave basis and periodic boundary conditions in section 3. In
section 4 we compare the performance of various algorithms outlined in the previous
section. We conclude in section 5 with a summary of our results and an outlook for
the application of the CL simulations to study broader classes of polymer field theory
models.

2. Diblock copolymer model. For demonstration purposes, we focus on im-
plementing field-theoretic simulations of an incompressible model of a symmetric di-
block copolymer melt. In 1980, Leibler developed a mean-field theory to study this
system and described a second order phase transition between an ordered lamel-
lar phase and a disordered phase [22]. Fredrickson and Helfand later showed that
composition fluctuations induce a first order character to this order-disorder phase
transition [14]. More recently, their findings were reproduced numerically using field-
theoretic simulations in two dimensions [16]; three-dimensional simulations have not
been computationally tractable hitherto. In this paper, we adopt the block copolymer
model and notations introduced in a recent review article and book on the subject
[12, 13].

We consider a canonical ensemble consisting of an incompressible melt of n AB
diblock copolymers contained within a volume V . Each polymer has an A block
with a volume fraction f of A-type statistical segments, or monomers. All numerical
simulations were conducted for the special case of symmetric diblocks, for which
f = 1/2. The length b and volume v of each A and B segment is assumed to be
the same, and the interactions between chemically dissimilar segments (relative to
interactions among like segments) are characterized by a Flory parameter, χ. A
standard coarse-grained description of each copolymer is the continuous Gaussian
chain model, which treats the polymer as a flexible thread of length N , where N is
its index of polymerization. A natural length scale of the system is the (unperturbed)
radius of gyration of the polymer, Rg0 = (Nb2/6)1/2, which is a physical observable.

For the above model, a particle-to-field transformation [13] leads to a statistical
field theory for the canonical partition function Z. This object can be expressed as a
functional integral over two fluctuating chemical potential fields

(2.1) Z =

∫

DW+

∫

DW− exp(−H[W±]),

in which W+(r) and W−(r) are potential fields conjugate, respectively, to total seg-
ment density and to the difference between the densities of A and B segments. The
Hamiltonian for the model system is given by

(2.2) H[W±] = C

∫

dr

[

−iW+ +
W 2

−

χN

]

− CV lnQ[W±],

where the common prefactor C is a dimensionless chain concentration defined by C =
n(Rg0)

3/V , and Q[W±] is the partition function (path integral) of a single polymer
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chain subject to the W± potential fields. We note that all lengths (or volumes) in the
above expression have been made dimensionless by scaling with appropriate factors
of Rg0. The single-chain partition function can be evaluated according to

(2.3) Q[W±] = (1/V )

∫

dr q(r, 1; [W±]),

with the chain propagator, q(r, s; [W±]), satisfying a Feynman–Kac formula [27]

(2.4)
∂

∂s
q(r, s) = ∇2q(r, s) − ψ(r, s)q(r, s), q(r, 0) = 1.

In this modified diffusion equation the contour distance s ∈ [0, 1] along the chain is
scaled by N , and the complex potential field ψ(r, s) is

(2.5) ψ(r, s) ≡
{

iW+(r) −W−(r), 0 < s < f,
iW+(r) + W−(r), f < s < 1.

2.1. Mean-field approximation. In the mean-field or self-consistent field
(SCFT) approximation, one makes the assumption that there is a single set of W±

“saddle point” field configurations that dominates the functional integral. It can be
shown that in this mean-field approximation the Hamiltonian is proportional to the
free energy of the system and thus must be a real number. As such, the W+ field will
be purely imaginary, whereas the W− field will be real. Saddle point solutions to this
set of equations can then be found where the Hamiltonian is maximized with respect
to the (real) iW+ field and minimized with respect to the W− field. In general, such
field theory models can possess multiple saddle points; the present diblock copolymer
model has a homogeneous saddle point corresponding to the disordered phase and
inhomogeneous saddle points corresponding to ordered phases of different symmetry
(lamellar, hexagonally packed cylinders, body-centered cubic spheres, etc.) [12]. For
the symmetric case of f = 1/2, only the disordered and lamellar saddle points are
relevant to the phase behavior (i.e., they have the lowest values of free energy or H).

The relevant functional derivatives for locating saddle points are given as

δH(W±)

δW+(r)
= iC [φA(r) + φB(r) − 1] ,

δH(W±)

δW−(r)
= C

[

−φA(r) + φB(r) +
2

χN
W−(r)

]

,

(2.6)

where the dimensionless densities (volume fractions) of A- and B-type segments are

(2.7) φA(r) =
1

Q

∫ f

0

ds q(r, s)q†(r, 1 − s)

and

(2.8) φB(r) =
1

Q

∫ 1

f

ds q(r, s)q†(r, 1 − s).

The backward propagator appearing in these expressions, q†(r, s), satisfies a second
modified diffusion equation

(2.9)
∂

∂s
q†(r, s) = ∇2q†(r, s) − ψ†(r, s)q†(r, s), q†(r, 0) = 1,
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with

(2.10) ψ†(r, s) ≡
{

iW+(r) + W−(r), 0 < s < 1 − f,
iW+(r) −W−(r), 1 − f < s < 1.

The mean-field SCFT equations that determine the saddle point field configurations
W ∗

± correspond to

(2.11)
δH[W±]

δW±(r)

∣

∣

∣

∣

W∗
±

= 0.

Given that the parameter C multiplies all terms in the Hamiltonian H, it is possible
to show by a steepest descent analysis that the partition function is asymptotically
dominated by the lowest energy saddle point configuration for C → ∞. For three-
dimensional copolymer melts C ∼ N1/2, so it follows that the mean-field approxi-
mation (SCFT) is asymptotically valid for copolymers of very high molecular weight.
Analysis of the SCFT equations for a symmetric diblock copolymer melt leads to the
prediction of a second order phase transition from a disordered melt to a lamellar
phase when χN is increased above 10.495 [22].

2.2. Beyond mean-field: CL dynamics. Here we shall be interested not in
mean-field solutions but rather in full solutions of the statistical field theory that
incorporate fluctuation effects. Our simulation tool will be the CL method [29],
which is based on time integration of the following stochastic dynamics scheme for
the coupled W± fields:

(2.12)
∂W±(r, t)

∂t
= −λ

δH[W±]

δW±(r, t)
+ η(r, t).

In these equations the variable t is a fictitious time, rather than a physical one, and
λ > 0 is an arbitrary (real) relaxation parameter. It is further understood that both
fields are extended throughout the complex plane so that the derivatives δH/δW± are
taken as complex derivatives. The noise term η(r, t), in contrast, is purely real and is
Gaussian and white in both space and time with the average properties

〈η(r, t)〉 = 0,

〈η(r, t)η(r′, t′)〉 = 2λδ(r − r′)δ(t− t′).
(2.13)

The theoretical basis behind the CL method has been reviewed in [12, 19, 29] and is
beyond the scope of this paper. However, for a broad class of model Hamiltonians
it can be shown that when these dynamics converge to a stationary distribution of
states, averages computed with a Markov chain of states from CL trajectories under
stationary conditions coincide with ensemble averages of the full field theory [17,
21]. It is important to note that at each single point along this chain, or for any
instantaneous set of field configurations, the physical model is not satisfied. For
example, the physically real Hamiltonian may be complex, or the incompressibility
constraint not strictly held, because the constraint has been relaxed through the
introduction of the Lagrange pressure-type field W+. Instead, these properties are
held by the averages along the entire CL trajectory. In-depth mathematical reviews
of the general CL equation and stochastic partial differential equations can be found
in [6, 7].
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More physically, we see that the CL equation (2.12) relaxes the fields in the di-
rection of a complex force proportional to the derivative of the complex Hamiltonian.
In the absence of the noise term η, these relaxational dynamics have stationary equi-
librium points at saddle points of the model. With the noise term, the CL dynamics
tends to drive the imaginary components of the fields towards a “constant phase”
condition

(2.14)

(

δH

δW

)

I

=
δHI

δWR
≈ 0,

where subscripts R and I denote real and imaginary parts, respectively, of a complex
function or field. The real part of (2.12), which contains the noise source, then serves
to stochastically drive CL trajectories along this nearly constant phase path. The CL
dynamics can thus be viewed as a type of adaptive stationary phase technique that can
be applied to high dimensional problems and that requires no advance computation
of saddle points or local analysis. In the present model, we note that as the parameter
C increases, the relative importance of the noise term is diminished so that the CL
trajectories are restricted to narrow regions about one or more saddle points and the
departure from mean-field behavior is small.

3. Numerical methods. Simulating the CL equations in the framework of poly-
mer field theory presents numerical hurdles in solving not only the stochastic differen-
tial equations, (2.12), but also the modified diffusion equations, (2.4) and (2.9). The
coupled system requires accurate and stable methods that can address its inherent
nonlinear and nonlocal nature. Thus the computational benefits gained by using a
high order scheme for solving the CL equations may be limited without improved
algorithms for solving the modified diffusion equations.

Previous work in field-theoretic simulations of polymers has focused primarily on
numerical solutions in the mean-field (SCFT) approximation, i.e., on the problem of
computing saddle points. Nevertheless, many of the advances made to algorithms
in this limit can be modified for use beyond mean-field in the CL framework. For
instance, the real and reciprocal space properties of the theory have been used to
optimize relaxation schemes for the smooth fields characteristic of weakly segregated
systems in the mean-field theory [24, 3]. More recently, there has been a focus on
simulating block copolymer systems in the strong segregation limit and with embedded
nanoparticles in which the chemical potential fields are rapidly varying in space [5, 34].
As the large gradients in these fields are similar to those created by the stochastic
terms in the CL equations, we shall see that some of the recent developments in
deterministic (mean-field) simulations can be extended to the stochastic non-mean-
field case with good results. Despite the considerable advances in numerical methods
for solving the SCFT equations, it is notable that prior to this work only the simplest
explicit, first order method (Euler–Maruyama) has been applied to solving the CL
equations.

3.1. Diffusion equations. An attractive method for solving the modified dif-
fusion equations in cubic or parallelepiped domains subject to periodic boundary
conditions is spectral collocation (pseudospectral) with a plane wave basis [18]. This
method achieves spectral accuracy for smooth fields and allows for a diagonal rep-
resentation of the linear operators appearing in the diffusion equations by treating
the Laplacian in reciprocal space and the potential terms in real space. One popular
approach in SCFT simulations is the operator splitting method of Rasmussen and
Kalosakas [32] and Tzeremes et al. [35]. In this scheme, the formal solution to the
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diffusion equation is expanded to second order in contour step Δs such that

q(r, s + Δs) = exp
[

Δs(∇2 − ψ(r, s))
]

q(r, s)

= exp

[

−Δs

2
ψ(r, s)

]

exp
[

Δs∇2
]

exp

[

−Δs

2
ψ(r, s)

]

q(r, s)

+ O(Δs3).(3.1)

By using this second order accurate approach with fast Fourier transforms (FFTs) to
convert from real to reciprocal space, each solution of the modified diffusion equation
requires a computational effort that scales as NsNx logNx, where Nx is the number
of spatial collocation points and Ns the number of contour steps. The solution of the
diffusion equations indeed represents the most computationally demanding component
of field-theoretic simulations.

In a recent paper, Cochran, Garćıa-Cervera, and Fredrickson expanded the ar-
senal of pseudospectral methods by proposing an unconditionally stable backward
differentiation formula (BDF) method to solve the modified diffusion equation for
systems with sharp interfaces [5]:

25

12
qn+1 − 4qn + 3qn−1 −

4

3
qn−2 +

1

4
qn−3

= Δs
[

∇2qn+1 − ψ(r)(4qn − 6qn−1 + 4qn−2 − qn−3)
]

,
(3.2)

where the subscript denotes contour position, i.e., qn = q(r, nΔs). To initialize this
algorithm, the first three steps are taken using backward Euler stepping with Richard-
son extrapolation. The method is fourth order accurate for smooth fields and dampens
high frequency modes, making it ideal for stiff systems. Further, it is expected to ex-
hibit fourth order accuracy for any prescribed set of W± fields as long as q is smooth
in s.

Once the single-chain propagator q is determined for the given potential fields,
the density operators, (2.7) and (2.8), are found locally using an appropriate scheme
to integrate along s. We have focused on minimizing Ns by using Gauss–Legendre
quadrature, but other methods, such as the composite Simpson method, are equally
applicable.

3.2. Time integration. The efficient evaluation of the CL equations (2.12)
for each field requires accurate resolution of the time integration of the stochastic
differential equation. Further, because this is a sampling method for an equilibrium
statistical mechanics problem rather than a true dynamics trajectory, only a weakly
convergent scheme is necessary [20]. Complicating matters is the fact that while the
stochastic term is a purely additive Gaussian white noise, the force term is nonlinear.
As such, previous CL simulations have been limited to a single step, explicit scheme.
We show here that by using analytic features of the theory for weakly inhomogeneous
fields, one can develop a class of methods that are more efficient, allow larger time
steps, and are more accurate.

3.2.1. Euler–Maruyama (EM). A standard method for solving the CL equa-
tion is the stochastic analogue to forward Euler time stepping. As it requires only a
single solution to the modified diffusion equation, the EM algorithm is an attractive
explicit scheme that is weakly convergent to order 1 [20]. For the present field-theoretic
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simulations, it takes the form

(3.3) W r,t+∆t
± = W r,t

± − Δtλ

[

δH[W t
±]

δW r,t
±

]

+ ηr,t,

with

(3.4) 〈ηr,t〉 = 0, 〈ηr,tηr
′,t′〉 = 2λ

Δt

ΔV
δr,r′δt,t′ ,

where Δt is the time step and ΔV is the volume associated with a cell of the col-
location grid. We note that the operations required in the update scheme of (3.3)
are purely local in space (on the collocation grid); the nonlocality of the theory is
manifest through the solutions of the diffusion equations that are required to evaluate
the forces according to (2.6), (2.7), and (2.8). While it is simple to iterate through
time and generate many configurational states with this algorithm, the method is
ultimately unfeasible for large three-dimensional simulations, as sampling uncorre-
lated field configurations is computationally demanding due to the small time step
required for system stability. We note that the computational effort per time step of
the EM scheme is O(NsNx logNx) since the solution of the diffusion equations and
force evaluation dominate the calculation.

3.2.2. First order semi-implicit (1S). An improvement to the explicit Eu-
ler updating used in mean-field calculations is a semi-implicit scheme introduced by
Ceniceros and Fredrickson [3] which uses a first order expansion of the functional
derivatives of the Hamiltonian in powers of the inhomogeneous parts of the fields. In
the diblock melt, the terms of the expansion that have been shown to be stabilizing
in the deterministic (SCFT) context are given as

[

δH

δW+

]

lin

= C(gAA + 2gAB + gBB) ∗W+,

[

δH

δW−

]

lin

=
2C

χN
W−,

(3.5)

where f ∗h ≡
∫

dr′ f(r−r′)h(r′) denotes a spatial convolution. The gij are the Debye
scattering functions [22] whose Fourier transforms are given by

ĝAA(k) =
2

k4

[

fk2 + exp(−k2f) − 1
]

,

ĝAB(k) =
1

k4

[

1 − exp(−k2f)
] [

1 − exp(−k2(1 − f))
]

,(3.6)

ĝBB(k) =
2

k4

[

(1 − f)k2 + exp(−k2(1 − f)) − 1
]

.

A straightforward application of this force splitting approach to the complex
Langevin update scheme is to treat the noise explicitly as in the EM integration
and the modified force term semi-implicitly. By adding the linearized force at the
future time and subtracting the same term at the present time, the fields are updated
according to

W r,t+∆t
± = W r,t

± − Δtλ

[

δH[W t
±]

δW r,t
±

+

(

δH[W t+∆t
± ]

δW r,t+∆t
±

)

lin

−
(

δH[W t
±]

δW r,t
±

)

lin

]

+ ηr,t,

(3.7)
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with the noise properties in (3.4). The extra computational cost of this modification
over the EM method is negligible, adding only a pair of Fourier transforms at every
step.

While this first order semi-implicit (1S) method will be seen to offer increased
stability over the EM scheme in CL simulations, it is still only first order weakly.
Moreover, because it relies on a weak inhomogeneity expansion to linearize the force,
the accuracy is expected to deteriorate as C → 0.

3.2.3. Second order splitting (2S). Once the force term is decomposed into
its linear and nonlinear parts, the implementation of high order methods becomes
more feasible. One such method that utilizes this form is the general second order
splitting algorithm developed by Öttinger [28] and Petersen [30]. This approach is
analogous to the trapezoidal method used to solve deterministic differential equations.
However, as only one term in the linearized force can be treated implicitly, the other
must be estimated with an explicit method. In general, the EM scheme is used as
a first order approximation to the nonlinear terms at the future time. While the
combination of this predicted value and the implicit linear term produces a second
order weak approximation to the field profile, this method carries over the additional
benefit of stability first seen in the semi-implicit method and derived from the nature
of the added and subtracted linearized force term. For our model, this algorithm can
be written

W t̃
± = W t

± − Δtλ

[

δH

δW±

]t

+ ηt,

W t+∆t
± = W t

± − Δtλ

2

[(

δH

δW±

)t+∆t

lin

+

(

δH

δW±

)t̃

−
(

δH

δW±

)t̃

lin

(3.8)

+

(

δH

δW±

)t
]

+ ηt,

where the linearized terms are given by (3.5) and we have suppressed the dependence
on the spatial grid point r.

This method is second order in the weak sense, and it requires two solutions
for each of the diffusion equations (2.4) and (2.9), one for the explicit estimation in

the Euler step and a second to compute the force term (δH/δW±)t̃ for the final step
forward. This effectively doubles the computational effort per time step relative to the
EM and first order semi-implicit schemes. Further, because this second order splitting
method (2S) relies on the linear approximation of the force term, the stabilizing
benefits may also decrease as C becomes small. However, the 2S method is expected
to perform better than the 1S method in small C simulations because it is fully second
order weakly accurate.

A second higher order method that we considered was the stochastic semi-implicit
backward differentiation formula (SSBDF) method recently developed by Ceniceros
and Mohler [4]. The method is strongly second order for small noise amplitude, ǫ,
and it converges with strong order O(Δt2 + ǫΔt + ǫ2Δt1/2). Although it has shown
promise in test simulations with large C, we are interested in methods that exhibit
improvements over the entire range of C. As such, we will not discuss the method in
this work.

3.3. Colored noise and Fourier acceleration. Beyond the development of
more robust time integration schemes, modifications of the CL equations to include
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spatially correlated colored noise may result in algorithms better designed to tackle
the multiscale nature of polymer field theories. Fundamentally, the long time scales
associated with long wavelength spatial modes hinder equilibrium sampling of the
field theory by requiring prohibitively long simulations. At the other end of the
spectrum, short wavelength spatial fluctuations tend to limit and control the stability
of the simulations. Numerically, this stems directly from the roughness in the field
configurations created by the addition of purely white noise. The use of spatially
correlated noise has been used successfully to address similar hurdles in lattice gauge
theory [8] and molecular dynamics simulations [1].

Incorporating colored spatial noise into the CL equations consists of a change in
the form of the relaxation constant λ appearing both as a dissipative constant in front
of the force term and as a constant prefactor in the variance of the noise. Specifically,
we replace the relaxation constant λ with a translationally invariant, real function
λ(|r− r′|). This new function will appear as the kernel of a linear operator acting on
the force in the generalized CL equation, and we demand that it be positive definite.
The generalized CL equation can be written

(3.9)
∂W±(r, t)

∂t
= −

∫

dr′ λ(|r − r′|) δH(W±)

δW±(r′, t)
+ η(r, t),

with the modified noise properties

〈η(r, t)〉 = 0,

〈η(r, t)η(r′, t′)〉 = 2λ(|r − r′|)δ(t− t′).
(3.10)

It can be shown [12] that the above generalized CL equations with positive definite
λ(r) have the same characteristics as the original CL equations, namely, that if the
scheme converges to a steady state, it will properly importance sample the complex
statistical weight of the full field theory.

Selection of the shape of λ(r), or equivalently its spatial Fourier transform λ̂(k),
is arbitrary subject to the requirement of positive definiteness, although it may be
guided by both physical intuition and the behavior of the simulated system. In the
original CL scheme, the function λ(r) = λδ(r) is localized in space but is delocalized

in reciprocal space, λ̂(k) = λ, corresponding to white noise. We might imagine that

by choosing a λ̂(k) that has a nonuniform distribution in reciprocal space (spatially
colored noise), a more rapid exploration of phase space might be possible, leading to
shorter equilibration times in CL simulations.

The stochastic differential equations for the generalized CL scheme can be solved
with the same algorithms described previously for the original CL equations, the
only change being that the convolution operator and noise terms in (3.9) are most
efficiently evaluated in reciprocal space by taking an FFT.

4. Results. The performance of the newly developed algorithms was tested in
a one-dimensional system with periodic boundary conditions in the x-direction. This
model is formulated in three dimensions, but only the x-direction is represented nu-
merically, so we assume uniformity in the y- and z-directions. All length scales are
expressed in units of the unperturbed polymer radius of gyration, Rg0, and the dimen-
sion of the system in the y- and z-directions is taken to be 1. With these assumptions,
ΔV = Δx and C = n(Rg0)/L, where Δx is the grid spacing and L is the length of
the system in the x-direction.
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Fig. 4.1. (a) Random field configuration for W± fields and (b) the corresponding converged
propagator profile for a field strength of S = 10 and Δs = 10−4.

The simulations were run on a Pentium 4, 3.2GHz processor with 2GB RAM
under Linux. The primary code was written in C, and the standard FFTW packages
were used for all Fourier transformations [15].

4.1. Diffusion equation: Fixed stochastic field. Previous to this work, the
algorithms presented for solving the diffusion equations for the chain propagators
(i.e., (3.1) and (3.2)) have been tested only for smooth potential fields W±, such
as are encountered in mean-field (SCFT) solutions of the field theory. In stochastic
simulations of the full theory the fields become spatially rough, and it is important to
understand the performance of the diffusion equation algorithms for such stochastic
fields, independent of the algorithms used for time stepping the CL equations. To
this end, we have generated a single rough configuration of the W± fields, and studied
the convergence of the chain end propagator, q(s = 1, x; [W±]), with respect to the
number of contour steps Ns at fixed spatial resolution Δx. We define an average
contour step Δs ≡ (Ns)

−1, although in full CL simulations the local contour step
δs varies along the chain consistent with the Gauss–Legendre weights used in the
quadrature for evaluating density operators. To mimic rough fields comparable to
those seen in CL simulations, we set W±(x) to N(0, S), where N(0, S) is a random
number chosen (independently at each grid point x) from a Gaussian distribution
centered at 0 and with a variance of S. The distribution of N should have similar
statistics to those of η, given in (3.4). In full CL simulations the noise strength has a
variance S = 2Δt/(CΔx), once the system has been discretized in space and time and
we have made the convenient choice λ = 1/C. Typical values of S range from ≪ 0.1
to > 5. In our diffusion equation tests, we chose an extreme value, S = 10, which
produces very rough field configurations for a system with Nx = 256 and L = 6. A
sample set of W± field configurations and the resulting converged propagator profile
q(s = 1, x; [W±]) (using Δs = 10−4) are shown in Figure 4.1.

In Figure 4.2, we show the error obtained from the BDF and operator splitting
methods as defined by Eq ≡ maxi |q(1, xi; Δs = 10−4) − q(1, xi; Δs)|. The error of
the BDF method is significantly smaller than that of the operator splitting method
for the entire range of Δs values considered. Further, each method is converging to
roughly the expected order of 4 for BDF and 2 for operator splitting. When taking
the function q to be exact at Δs = 10−4, the operator splitting method requires more
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Fig. 4.2. Maximum error of the chain end propagator q(1, x) as a function of Δs for the BDF
(3.2) and operator splitting (3.1) methods at a fixed Δx = 0.023.

Table 4.1

Performance of BDF and operator splitting pseudospectral methods for low resolution propaga-
tor simulations.

Operator splitting BDF
Ns CPU time (sec) Order CPU time (sec) Order
50 0.0289 1.44 0.0486 1.97
100 0.0584 1.21 0.0881 3.56
200 0.1185 1.11 0.1645 4.00

than 1000 contour steps to achieve 99% accuracy. The BDF method achieves the
same accuracy with an order of magnitude fewer contour steps, Ns ≈ 100. Table 4.1
shows the order of each method for larger contour step sizes as calculated by the rate
of convergence of the chain end propagator error as well as the CPU time required per
solution of the diffusion equation using Nx = 256 spatial points and L = 6. While the
BDF method is up to 70% slower than the operator splitting method, it has already
reached its asymptotic order of 4 by Ns = 200, whereas the operator splitting method
has not entered its asymptotic order regime at the same contour resolution.

4.2. Diffusion equation: Full CL simulations. Having determined the con-
vergence rate of the chain propagator for a single realization of the potential fields,
we now turn to study the effect of the chain resolution Δs on the accuracy of aver-
ages computed from simulated trajectories of the CL equations. This is essentially a
test of the diffusion equation algorithms. The only other place the contour resolution
plays a role is in the quadrature schemes used to compute the density operators, but
these schemes are higher order than the diffusion equation algorithms. In full CL
simulations, the convergence of the chain propagator q is not measured directly, but
rather the expectation value of an observable, such as the Hamiltonian, is of interest.
The value of H is an especially important quantity in mean-field calculations (with
smooth fields), as it corresponds to the free energy of the system. Beyond the mean-
field approximation, the average Hamiltonian computed in a CL simulation can be
coupled with a thermodynamic integration scheme to determine the free energy of a
fluctuating system.
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To investigate contour discretization effects in the full CL context, we ran a series
of simulations to determine the contour resolution Δs necessary to achieve a desired
accuracy in the average of the real part of the Hamiltonian, HR = ℜ(H), over the
course of a CL trajectory. The average can be defined by either the ensemble average
or the time average. To compute ensemble averages, a random initial condition for
the W± fields is satisfied, and the system integrated forward to a set time, tf , using
CL dynamics. The process is repeated for multiple white noise seeds while applying
the same initial conditions for the fields, and the convergence of the method with
respect to Δt is examined by constructing the ensemble average of H(t = tf ) for each
Δt. This ensemble average is defined as

(4.1) H̄R =
1

Nj

Nj
∑

i=1

Hi
R(tf ),

where Nj is the number of simulation runs (random seeds), and Hi
R(tf ) is the real

part of the Hamiltonian of simulation i at time tf .
Time averages are determined by running a single simulation and averaging the

value of H(t) under stationary conditions over a suitably broad time window. The
average is defined as

(4.2) 〈HR〉 =
1

Np

Np
∑

n=1

HR(nΔt),

where Np is the number of time steps taken along the CL trajectory after the system
has equilibrated and NpΔt is the width of the time window.

For the purpose of these tests, we used the first order semi-implicit time integra-
tion scheme with time step Δt = 0.05. The trajectories consisted of 40,000 iterations
for each Δs, and we chose parameters corresponding to a strongly fluctuating, dis-
ordered copolymer melt: C = 100, χN = 10, and L = 4. Here we focus on the
relative performance of the two diffusion equation algorithms using a single CL time
integration scheme. In a subsequent section we will discuss the relative performance
of the three stochastic integration methods.

At a fixed spatial resolution Δx, we have found that the expectation value of
the real part of H, 〈HR〉, converges to a finite value for Δs → 0. In Figure 4.3,
we show the contour resolution Δs required to achieve 0.1% and 0.5% error in 〈HR〉
using the BDF diffusion equation algorithm as a function of the spatial resolution Δx.
For high spatial resolution simulations, the necessary contour resolution for the BDF
method scales (remarkably!) as Δs ∼

√
Δx, whereas for lower spatial resolution the

relationship is linear. Interestingly, the operator splitting scheme does not perform
so well in this “acid test” of diffusion equation algorithms. The operator splitting
method requires a contour resolution that scales as Δs ∼ (Δx)µ with the exponent μ
between 1 and 2 over the same range of Δx.

The implications of these results for the computational requirements of CL simula-
tions are significant. A diblock melt at moderate interaction strength, e.g., χN < 20,
is generally resolved to Δx = 0.2 or smaller. At this spatial resolution, the num-
ber of contour steps Ns needed for accurate evaluation of the Hamiltonian using the
BDF method scales linearly with the number of spatial collocation points Nx. On
the other hand, the operator splitting method generally requires Ns ∼ N2

x . Thus
by simply changing the algorithm for solving the modified diffusion equations to a
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Fig. 4.3. Contour resolution requirements for the error in the Hamiltonian to be less than
0.5% (solid line) and 0.1% (dotted line) as a function of Δx for a symmetric diblock with C = 100
and χN = 10 using the BDF scheme.

Table 4.2

Ensemble averages H̄R(t = 80) of the real part of the Hamiltonian for the EM, first order
semi-implicit splitting (1S), and second order semi-implicit splitting (2S) methods for multiple step
sizes. The % bound column indicates the percentage of the Nj = 20,000 simulations that did not
explode for the step size. An accurate reference value, taken with the 2S method at Δt = 0.5, is
H̄R(t = 80) = 0.1195.

EM 1S 2S
Δt H̄R % bound H̄R % bound H̄R % bound
2.0 0.145 100% 0.103 100% 0.119 100%
8.0 −65.39 63% 0.075 100% −17.14 94%
20.0 27.52 99% 0.051 100% −50.98 97%

method that is only modestly more expensive per contour step (BDF scheme), one
can dramatically decrease the number of contour steps required by a large factor of
order Nx.

4.3. Stochastic integration: Ensemble averages. Using a segregation
strength and C value that corresponds to a strongly fluctuating but disordered copoly-
mer melt, χN = 10 and C = 100, we have numerically explored the weak convergence
characteristics of the three stochastic integration methods described. Specifically, we
first consider the weak convergence of the average Hamiltonian by looking at ensem-
ble averages, as defined in (4.1). The accuracy of the method is then determined
as a function of Δt by comparing the value of the ensemble average computed for a
given step size, H̄R(Δt; tf ), to an accurate reference value defined as H̄R(Δt = 0.5; tf )
calculated with the 2S method.

In applying these stochastic integration schemes to polymer field-theoretic simu-
lations, we have found that as the fictitious time, t, increases the number of exploding
trajectories increases. Despite these unbounded trajectories, approximations to the
physical averages can still be made by rejecting those paths which are unbounded [26].

Table 4.2 lists the ensemble average H̄R(t = 80) for three different values of
Δt using each algorithm. The system parameters are χN = 10, C = 100, L = 8,
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Fig. 4.4. Convergence of the real part of the Hamiltonian as Δt decreases for the EM, first order
semi-implicit splitting (1S), and second order (semi-implicit) splitting (2S) methods for (a) C = 100
and (b) C = 10. The number of steps taken for each Δt is adjusted such that the sampling error is
smaller than the time integration for all points. The data from the EM and 2S schemes are limited
at large Δt by stability.

NjΔt = 20,000, Nx = 128, and Δs = (Δx)2. The trends show that the 2S method is
accurate up to the point when the number of exploding trajectories becomes nonzero.
The 1S algorithm, on the other hand, converges with roughly order 1 and has no
exploding trajectories at any step size, but it is accurate for only very small values of
Δt. As expected, the EM method is not accurate for modest values of Δt.

These trends can be further understood by the realization that the short simula-
tion paths employed allow for oscillatory trajectories to be included in the ensemble
averages. This effectively increases the error in the average Hamiltonian for any given
set of simulation parameters. For example, the error of the EM method for Δt = 20.0
is ∼ O(102), though 99% of trajectories are bounded. As tf = 80, however, this im-
plies that the system is updated only four times. Hence the trajectory may oscillate
without exploding.

4.4. Stochastic integration: Time averages. Calculating the time average
of a given system is generally preferred to taking the ensemble average, as the latter
requires the system to be reinitialized Nj times. As such, we focus now on the
performance of the stochastic integration algorithms with respect to time averaging,
as defined in (4.2).

In Figure 4.4, we show the time average of the real part of the Hamiltonian,
〈HR〉, as a function of the stochastic integration method and the time step size for
our model system at χN = 10, L = 8, NpΔt = 20,000, Nx = 128, and Δs = (Δx)2

for both C = 100 (moderate fluctuations) and C = 10 (strong fluctuations). Of the
newly developed algorithms, the first order semi-implicit method (1S) shows fewer
exploding trajectories independent of C. However, as the method is still first order,
the error becomes significant for time steps Δt larger than ∼ 0.1. On the other hand,
the accuracy in determining 〈HR〉 is remarkably independent of the step size for the
second order splitting scheme (2S), but this scheme is somewhat limited in stability
when compared to the first order semi-implicit method.

Integration using the EM method appears to be as accurate as scheme 1S when
looking only at 〈HR〉, but it has poor overall stability. The deviation of the mean
of the imaginary part of the Hamiltonian, HI , is particularly useful for detecting
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Fig. 4.5. The magnitude of the imaginary part of the Hamiltonian as a function of Δt for each
of the three stochastic integration methods for (a) C = 100 and (b) C = 10. The values have been
averaged over the first Np steps, where NpΔt = 20,000.

this instability. As H is a physical quantity, its expectation value must be purely
real. However, CL sampling allows for a complex-valued Hamiltonian for any given
realization of the fields. In Figure 4.5 we show the average of HI for the same simula-
tions shown in Figure 4.4. For time steps satisfying Δt > 0.1, the EM method leads
to an average imaginary part of the Hamiltonian, 〈HI〉, that is O(1) (and growing
with length of the trajectory), whereas the other methods show the expected small
values < 10−4 of 〈HI〉 for these step sizes in a simulation where C = 100. Simi-
larly, when C = 10 the average of HI is O(10) after only 20,000 fictitious time steps,
NpΔt = 20,000. The corresponding values calculated using the 1S and 2S methods
are again O(104) times smaller.

The practical choice of time step for each scheme depends on the stability of the
method and accuracy desired. As the accuracy in 〈HR〉 of the second order method
(2S) was shown to be nearly independent of the step size throughout its region of
stability, stability is the limiting factor. We can thus characterize the performance of
the 2S method by determining the effect of the strength of the noise on the stability of
simulations. For this purpose we have conducted a series of 1000 time step simulations
using the 2S stochastic algorithm and Nx = 64, L = 8, Ns = 150, and χN = 10.
The noise strength parameter C is varied systematically, and for each value of C we
determine the largest step size Δt one can take while keeping the number of unstable
exploding trajectories under 25%. The results are shown in Figure 4.6. Each set of
parameters was run 100 times, each from a different random number seed. For very
low noise strength, C > 1000, the stability limit plateaus around Δt = 8.5, even as
the noise level asymptotically approaches 0. On the other hand, for highly fluctuating
systems, C < 20, the effect of C on the stability is again small, generally requiring
step sizes Δt � 2 for long simulations.

Unlike the second order method 2S, the first order semi-implicit method 1S is
extremely stable but of limited accuracy. Further, the relative (%) error in the average
real part of the Hamiltonian, 〈HR〉, of any simulation using algorithm 1S appears to
depend only on Δt and not on C. This effect is captured explicitly in Figure 4.7
for a system with Nx = 64, L = 8, Ns = 150, and χN = 10. Each data point
shown in the figure is averaged over nine independent simulations with C varying
from 10 to 5000. The error is defined using the difference between 〈HR〉 computed



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPLEX LANGEVIN EQUATIONS IN POLYMER FIELD THEORY 1363

1 10 100 1000 10000

C

2

3

4

5

6

7

8

9

10

∆
t

77/100

65/100

59/100

93/100

29/100

96/100

58/100

97/100

0/100

100/100

Fig. 4.6. Effect of C on the stability of large time steps for the second order method 2S. Shown
are the total number of bounded simulations per 100 runs. The squares (filled) are at the largest
possible step size in which < 25% of the trajectories explode, and the circles (unfilled) are located at
slightly larger step sizes, where > 25% of the trajectories explode.

(a) (b)

0.1 1 10

∆t

0.001

0.01

0.1

1

E
rr

o
r 

<
H

R
>

10 100 1000 10000

C

0.001

0.01

0.1

1

E
rr

o
r 

<
H

R
>

∆t = 10.0

∆t = 1.00

∆t = 0.10

Fig. 4.7. Relative error in the real part of the Hamiltonian for algorithm 1S (first order semi-
implicit) as a function of (a) Δt and (b) C. For the Δt variations, each value is averaged over
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large step sizes) to ∼ 0.8 (for small step sizes) over the ranges of step sizes considered. The explicit
dependence of the error as a function of C is also shown for three selected step sizes.

using scheme 1S at the specified Δt, 〈HR〉1S , and a reference accurate value of 〈HR〉,
〈HR〉2S , computed with scheme 2S using Δt = 0.01. The relative error, defined by
|〈HR〉1S − 〈HR〉2S |/|〈HR〉2S |, is then averaged over all C values, and the results are
shown in Figure 4.7(a). To understand the role of the noise strength parameter C on
the accuracy of simulations using scheme 1S, we show in Figure 4.7(b) the relative
error as a function of C for three different Δt values. Interestingly, the relative error
for algorithm 1S is approximately independent of the noise strength and depends
primarily on the size of the time step. The effect of Δt on the error is consistent with
a weakly first order method, as the slope in Figure 4.7(a) is ∼ 0.75 and increasing as
Δt decreases.
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Table 4.3

Computational effort required to sample uncorrelated points using the first and second order
methods 1S and 2S for C = 10. The step size was chosen to be the largest possible while keeping
the relative error below 2%.

Method CPU time/step (sec) Δtmax CPU time (sec)
1S 0.032 0.1 32.16
2S 0.074 2.0 3.91

As each of the methods has been shown to converge to the same average value
of HR for sufficiently small Δt, the best measure of the overall performance of each
scheme is the CPU time required to reach a specified accuracy in 〈HR〉. While the
second order method 2S is more accurate over a wide range of time steps, it requires
twice the computational effort per step than the first order methods EM and 1S. Ef-
ficient simulations, however, must quickly sample uncorrelated points in phase space.
The number of fictitious time steps between these points is the correlation time, tC .
This time is to a very good approximation independent of both the relaxation method
employed in the simulation and the time step Δt. Moreover, tC plays a key role in
determining the sampling error, which scales as

√

tC/t, where t = NpΔt is the width
of the sampling window used to compute time averages. Thus, under conditions where
the algorithm 2S allows for the use of a Δt that is more than twice as large as the
time step under scheme 1S for the same level of accuracy, we expect that the second
order algorithm will outperform the first order scheme in reducing both CPU time
and statistical sampling error.

To compare the relative performance of the 1S and 2S algorithms, we have de-
termined the computation time required to reach a specific t > tC for a test system
with Nx = 128, L = 8, Δs = (Δx)2, χN = 10, and C = 10. In Table 4.3 we give
the CPU time required to reach t = 100 for the 1S and 2S methods while setting
Δt for each method to the largest value, Δtmax, consistent with a relative error in
〈HR〉 of less than 2% (cf. Figure 4.4). While the second order method is more than
twice as expensive as the first order semi-implicit method per step, the computation
time required to obtain uncorrelated field configurations is reduced by an order of
magnitude due to the significant difference in time step size.

4.5. Colored noise and Fourier acceleration. As described previously, it
is natural to expect that generalized CL schemes with colored spatial noise may be
better suited than the conventional CL method to address the multiscale features (in
both space and time) of polymer field theory models. Defining a colored noise scheme
requires specification of the function λ(r), or correspondingly its spatial Fourier trans-

form λ̂(k), which dictates the spatial pair correlation function of the noise. Optimal
selection of this translationally invariant function is nontrivial, and various factors
must be considered. For example, physically inspired noise distributions, such as
the noise spectrum associated with diffusive dynamics λ̂(k) ∼ k2, drive the system
most strongly at short scales/high wave numbers. However, this same “conserved”
dynamics implies that the relaxation of field variables is slowest at long length scales.
The convergence of simulations is then delayed by the need to anneal the longest
wavelength modes, particularly in ordered systems.

An appropriate choice of λ̂(k) will evidently be model dependent and possibly
parameter dependent. For the present case of the symmetric diblock copolymer melt
model, we exploit the fact that the equilibrium distribution of field fluctuations is
strongly peaked about a spherical shell of nonzero wave vectors, km ≈ 3, in reciprocal
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Fig. 4.8. The half-life (a) of the time correlation function of Ŵ− as a function of wave number.
The time correlation function (b) for a single wave number, k = 3.

space [22]. As we shall see below, these modes are the slowest relaxing in the system,
at least in the disordered melt phase. By choosing a colored noise spectrum that
mimics the relaxation times of the fields in reciprocal space, an algorithm can be
defined that relaxes all spatial Fourier modes at approximately the same rate. While
we have no rigorous proof that such a noise spectrum is optimal, we provide numerical
evidence below that it does appear to be an improvement over the standard white
noise-based CL technique.

In Figure 4.8(a), we show the half-life of the relaxation for each Fourier mode of
the exchange potential field W− as defined by the time, τ , that satisfies

〈Ŵ−,R(k, τ)Ŵ−,R(−k, 0)〉
〈Ŵ−,R(k, 0)Ŵ−,R(−k, 0)〉

= 0.5.

These results were obtained with a conventional white noise CL scheme using algo-
rithm 2S and for parameters Δt = 0.1, Nx = 64, L = 8, Ns = 150, χN = 10, and
C = 100. The second pressure-like field W+ fluctuates very quickly and, while gen-
erally responsible for inducing the main stiffness in the stochastic integration, has an
insignificant correlation time. Thus, we focus our analysis on the fluctuation spec-
trum of the W− field. While our test system is still within the disordered regime
at χN = 10, the length scale ∼ 2π/km, corresponding to the preferred domain size
for the ordered phase, dominates the equilibrium fluctuation spectrum (equal time
correlations) of the W− field. Figure 4.8(a) shows that the W− Fourier modes with
k ≡ |k| ≈ km are also the slowest relaxing modes.

The observed k-dependence of the half-life of Ŵ− modes closely mimics the k-
dependence of the Debye function that enters the linearized force term for the W−

field. While only the χ terms proved to be stabilizing in constructing the semi-implicit
relaxation methods (see (3.5)), the entire expansion of the force to first order in W−

is

(4.3)
1

C

[

δH

δW−

]

=
2

χN
W− − (gAA − 2gAB + gBB) ∗W− + O(W+) + O(W 2

−),

where gij are the Debye functions defined in (3.6). Inspection of the function ĝT (k) ≡
ĝAA(k) − 2ĝAB(k) + ĝBB(k) indicates that it is indeed strongly peaked near km ≈ 3
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Fig. 4.9. Three different models for the colored spatial noise distribution λ̂(k) employed in
generalized CL simulations of diblock copolymer melts. The distributions are nonnegative and are
normalized to unit maximum noise strength over the range of wave numbers used in the simulations.

and mirrors the k-dependence shown for the mode half-life in Figure 4.8(b). Because

λ̂(k) enters the generalized CL equations both as a noise strength and mode relaxation
rate, it would seem that the choice

(4.4) λ̂(k) = ĝT (k)

is a rational way to approximately cancel the “critical slowing down” of the k ≈ km
fluctuation modes observed in the white noise CL simulations.

Two other model colored noise distributions studied in this paper are simple
diffusion-inspired noise and a long wavelength biased noise. The diffusion-type noise,
given by λ̂(k) = k2, corresponds to the transform of the diffusive operator −∇2 ap-
pearing in phase field models, such as the Cahn–Hilliard equations. Diffusive noise
evidently relaxes high wave number fluctuations most rapidly but also provides a
strong source of roughness for the stochastic fields. While physically motivated, dif-
fusive noise can limit the stability of stochastic integration schemes. The last colored
noise model considered here is a long wavelength biased noise that is the inverse
of diffusion-type noise, λ̂(k) = k−2. Conceptually, the high wave number damping
should improve stability, while the longest wavelength modes are relaxed most rapidly
to (ideally) move the system quickly between metastable states. All three of these

model noise spectra, shown in Figure 4.9, are scaled such that maxk λ̂(k) = 1 for k
over the range of allowable wave numbers. We note that the k = 0 uniform mode
does not influence the thermodynamics of the model in the canonical ensemble, so
fluctuations of this mode are explicitly suppressed.

Using purely white noise in the W+ field and the three different types of colored
noise in the W− field, we studied the accuracy and relaxation times of HR for a
system of L = 8, Nx = 128, and Ns = 256 at χN = 10 and C = 100. The stochastic
integration method employed was the first order scheme 1S, as it is the most stable
algorithm. The effect of the colored noise spectrum on the accuracy of 〈HR〉 is shown
in Figure 4.10. The error bars are the deviation in the running average, each of which
is taken over 5000 fictitious time steps, NpΔt = 5000. For all colored noise spectra
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Fig. 4.10. The average value of the real part of the Hamiltonian as a function of the step size
for the white noise (λ̂(k) = 1) and three colored noise spectra considered for a system with Nx = 128,
L = 8, Ns = 256, χN = 10, and C = 100.
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Fig. 4.11. The autocorrelation function of the real part of the Hamiltonian for the four noise
spectra considered for a simulation with the parameters Nx = 128, L = 8, Δt = 1.0, Np = 2 × 104,
Ns = 256, χN = 10, and C = 100. The function has been normalized by the second moment of HR.

and time step sizes < 10 the accuracy is within 10% and is markedly better than the
white noise model for Δt > 1.

The decay time of the autocorrelation function of the real part of the Hamiltonian
provides more insight into the mechanisms for this uniform improvement in accuracy.
For each colored noise spectrum, the correlation time increases compared with that for
white noise, as shown in Figure 4.11. For the Debye noise ĝT (k), this increase is ten-
fold. The diffusion and inverse diffusion noise spectra show increases of 2.5 and 15
times, respectively. This effect is presumed to come from scaling λ to be 1 at its
maximum, as the trends in correlation time mirror inversely the integrated areas of
the noise spectra shown in Figure 4.9. At the same step size Δt, simulations with
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Table 4.4

Computational requirements for each of the noise spectra considered using the 1S scheme. The
maximum time step, Δtmax, is the largest step that can be taken while ensuring that 〈HR〉 is within
5% of the accurate reference value computed with the 2S scheme using Δt = 0.01. The correlation
time τC is computed as the half-life from the autocorrelation function of HR.

Noise spectra Function τC Δtmax CPU time/τC (sec)

White λ̂(k) = 1 9 1.0 0.289

Debye λ̂(k) = ĝT (k) 77 20 0.123

Diffusion λ̂(k) = k2 20 10 0.064

Inverse diffusion λ̂(k) = k−2 214 0.5 13.376

colored noise distributions λ̂(k) < 1 relax nearly all modes more slowly than the white

noise model with λ̂(k) = 1.

The true test for the performance of a colored noise algorithm versus the white
noise scheme is therefore to compare correlation times when each model is simulated
at the maximum time step consistent with a prescribed accuracy. For example, the
average Hamiltonian of the Debye noise model is still accurate to within 5% for step
sizes Δt > 20. While the correlation time of this model is a factor of ten larger
than the white noise model, the twenty-fold gain in step size for the same accuracy
over the white noise simulation means that Debye colored noise provides a two-fold
improvement in terms of computational requirements. Table 4.4 summarizes this
comparison in performance using the 1S algorithm for all three colored noise models
against the white noise model.

Interestingly, the diffusive model considerably outperforms the white noise model
and the other two colored noise models. Both the Debye and the diffusion models
perform better than the conventional white noise CL scheme. While these results
are promising, they should be considered as preliminary and should be extended to a
wider variety of parameters and polymeric fluid models.

5. Conclusions. There is great interest in the development of numerical meth-
ods for simulating classical statistical field theory models of inhomogeneous polymeric
fluids, so-called field-theoretic polymer simulations. These models are plagued by the
sign problem associated with complex Hamiltonians, but the CL simulation technique
has been shown to provide an effective numerical tool for circumventing this prob-
lem. Nonetheless, the stochastic CL equations present a formidable set of nonlinear,
nonlocal field equations that have not previously been the subject of detailed study.

In the present paper, we have shown that analytic information about the linearized
complex force that drives the dynamical evolution can be used to develop effective
semi-implicit time integration schemes for the CL equations. These schemes have
significantly better stability than the simplest explicit EM method, and one of our
algorithms, scheme 2S, adopted from a second order weak algorithm [28, 30], shows
dramatically improved accuracy in application to a standard field theory model of
block copolymer melts. It is expected that these methods may be applied with similar
success to further classes of polymer models. In SCFT simulations, the deterministic
analogue of the 1S method has been used for single homopolymer and homopolymer
blends with similar effects on the simulation stability [3]. These mean-field results
suggest the 1S and 2S algorithms may be successfully applied to CL simulations of
general polymer models. Indeed, the 2S method has already proven to be useful in
the study of complexation of polyelectrolytes in solution [31].

Another significant finding is that the use of higher order schemes for resolving
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the chain propagator q(r, s) along the contour variable s, which is the most compu-
tationally demanding step of a field-theoretic polymer simulation, can significantly
improve the performance of CL simulations. Specifically, we show that a fourth order
semi-implicit BDF can reduce the computational effort of a stochastic CL simulation
by an order of magnitude when compared with standard second order algorithms.

Finally, we have reported on a preliminary investigation of the use of a “general-
ized” CL scheme that forces the CL equations with spatially colored noise, rather than
the white noise conventionally applied in CL simulations. We find numerical evidence
that the efficiency of CL simulations can indeed be improved by a proper selection
of the colored noise spectrum. The strategy of attempting to select a noise spectrum
λ̂(k) that makes the relaxation rate of field fluctuation modes with wave number k
more uniform seems to be effective at improving the performance of CL simulations.
Nonetheless, we have no proof that this is an optimal strategy, and much work re-
mains to be done to establish the best algorithms and noise statistics for conducting
CL simulations on a broad class of models.

By appropriately coupling the above methods, we have shown that field-theoretic
simulations employing the stochastic CL method are a tractable solution to studying
polymer physics on the mesoscale. We are optimistic that this work and further de-
velopments will allow the investigation of broad classes of important physical systems
including block and graft copolymers, polymer alloys, polyelectrolytes, and liquid
crystalline polymers.
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