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Abstract

Firearm violence rates have increased in U.S. cities in 2020 and into
2021. We investigate contagious and non-contagious space-time cluster-
ing in shooting events in four U.S. cities (Chicago, Los Angeles, New York
and Philadelphia) from 2016-2020. We estimate the dynamic reproduction
number (Rt) of shootings, a measure of contagion, using a Hawkes point
process. We also measure concentration over time using a spatial Gini
index. We find that the contagious spread of violence increased in 2020
in several, but not all, of the cities we considered. In all four cities, non-
contagious (Poisson) events comprised the majority of shootings across
time (including 2020). We also find that the spatial location and concen-
tration of shooting hot spots remained stable across all years. We discuss
the implications of our findings and directions for future research.

1 Introduction

In the wake of a global pandemic and social unrest throughout the United States,
firearm violence has risen to concerning levels across many of America’s large
urban cities. In their recent report of crime rates in the year 2020 across 34
cities, Rosenfeld and colleagues [43] observed a 30 percent increase in homicide
rates as compared to the previous year. Gun assaults increased 8 percent in this
similar time period. Early media reports in 2021 suggest this troubling trend in
lethal violence persists. Scholars currently seek explanations to this sharp rise
in violence, while police departments and municipal governments are desperate
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to identify effective interventions to curb this growing epidemic. The causes and
correlates of urban violence have proven difficult to parse apart.

Over the past decade, scholars have sought explanations of gun violence
trends through spatiotemporal event modeling. In short, gun violence is be-
lieved to generate contagion effects, or repeat events. Put simply, firearm vio-
lence begets more firearm violence through several mechanisms. Concentrated
social disadvantage in neighborhoods [31, 32, 49] as well as retaliatory events
associated with gang violence and geographic turf wars [13, 16, 32, 33, 41] aid
this explanation of the spatial diffusion of gun violence. Firearm homicides,
shots fired, and non-fatal shootings have been shown to demonstrate spatial
spillover effects from one census track to another [8, 57, 58], while the spa-
tial clustering of firearm violence has been observed to be non-random at both
the county [25] and block levels [37]. Moreover, several studies have demon-
strated that gun violence does indeed generate near-repeat spatiotemporal pat-
terns [7, 14, 24, 38, 47, 53, 55, 56]. Such contagion effects may explain the
spatial trends in firearm violence patterns, where some geographies within a
city endure chronic and highly concentrated firearm violence while others areas
of the same city experience significant fluctuations of these same events [4, 44].
Thus, contagious shooting events which spread to other geographies within a
city may exacerbate overall levels of violence for a given city.

In this article we investigate the extent to which the rise in gun violence in
2020 (see Figure 1) in four major U.S. cities can be explained by an increase
in the contagiousness of shooting events. For this purpose we use a spatiotem-
poral Hawkes process [26, 22] to estimate the dynamic reproduction number
(Rt) of shooting events, along with a non-contagious background Poisson rate
of events that controls for day of week, month of year, and long-term trends
that can generate stable space-time clustering patterns [34]. The Hawkes pro-
cess is a stochastic version of the susceptible-infected-removed (SIR) model in
epidemiology [40] and estimates events as a branching process where each event
generates a probability of other events nearby in space and time. We also inves-
tigate space-time clustering and concentration of shooting events using a spatial
Gini index applied to yearly data.

While public discourse has largely centered on the rise in homicide [43] in
2020 and 2021, we focus on shootings for a couple of reasons. First, while
homicide rates have increased across many urban communities, lethal violence
remains a rare event when considered in space and time. Sparse data makes
estimation of spatiotemporal patterns difficult to do with a level of certainty
afforded through the use of shooting data, which are more frequent in number.
Second, research has demonstrated a considerable overlap in space and time
between homicide and non-fatal shootings [4], while event level analyses have
demonstrated few differences in the demographic characteristics between those
who live and those who die in shooting events. Rather what differentiates a
non-fatal shooting from a fatal shooting are factors such as wound severity [15],
the caliber of weapon used [3], and the speed of emergency response. This body
of work suggests the study of all shooting events can help to better understand
spatiotemporal patterns in homicide.
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The outline of the paper is as follows. In Section 2, we discuss related
literature on crime contagion and gun violence. In Section 3, we discuss our
methodology, including Hawkes process modeling and estimation, and a modi-
fied Gini index estimator used for measuring spatial concentration when event
counts are low. In Section 4, we provide details on the open source shooting
data used for this study covering 2016-2020 from Chicago, Los Angeles, New
York, and Philadelphia. In Section 5, we present the results of our analysis.
We find that contagion is estimated to have increased in 2020 in several, but
not all, cities. In all four cities, spontaneous non-contagious (Poisson) events
are estimated to have comprised the majority of events across time, consistent
with research on acoustic gunshot detection [22]. We also found that the spa-
tial location and concentration of shooting hotspots, as measured through the
Gini index, remained stable across 2016-2020. In Section 6, we discuss the im-
plications of our findings, limitations of our analysis, and directions for future
research.
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Figure 1: Weekly number of shootings from 2016-2020 in Chicago, Los Angeles, New
York, and Philadelphia.

2 Related work on crime contagion and gun vi-
olence

The idea of crime contagion is not specific to the study of violent crime. Indeed,
crime contagion is conceptually equivalent to ideas of event dependence and re-
peat victimization [12, 17, 5]. The study of contagion is also not restricted to a
single spatiotemporal scale. At the finest scale, the general model of contagion
posits that there is some interaction between individual offenders and the phys-
ical and/or social environment that causally triggers subsequent events. In the
case of property crimes, offenders ‘learn something’ about their targets (e.g.,
vulnerable houses) in the process of committing a first crime that attracts them
back to that same location to repeat the prior success [46]. Alternatively, those
same offenders might share what they learned with others who then act on that
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information [54]. In the case of violent crime, an attack by one party on an-
other triggers a retaliatory response [36, 10, 5]. Retaliation is driven either by
a so-called ‘code of the street’ [1], or by a deep-seated individual psychological
need for revenge [48]. For both property and violent crime, the expected statis-
tical pattern of crime contagion is that offspring events (the result of contagious
spread) will occur near in time and space to the parental events (the triggers of
contagious spread) [30].

With respect to gun violence, in particular, Fagan and colleagues [11] pro-
vided a useful model of the potential for social contagion that could help to
explain the noted increases in homicide and gun violence in 2020. At the center
of this model of social contagion of violence are firearms, and the influence these
weapons have on social interactions. When guns are perceived as pervasive in
a local context there are resultant changes in perceptions of danger associated
with interpersonal disputes or conflicts between groups, creating an “ecology of
danger.” Given this backdrop, increases in the real or perceived threat of the use
of weapons in disputes leads to the contagion of fear, whereby residents perceive
not only that others have guns, but that they are likely to use them should the
need arise. This leads to more people carrying a firearm both for self-protection
in the event they are the target of a crime, and as a status symbol in order to
dissuade others from attempting to victimize them. Finally, this process leads
to the widespread adoption of violent identities, where people portend a tough
or aggressive persona that denotes a willingness to engage in violence if chal-
lenged. Together, knowledge of increased rates of firearm violence in a local
area can both set this process in motion, but also reinforces and amplifies the
necessity of using guns to settle disputes.

In 2020, there were numerous events and social processes that may have
helped to set the social contagion of violence processes in motion, and reinforce
the necessity of carrying and using firearms to settle disputes. First, there
were already signs of increased gun violence, including homicide, across U.S.
cities starting in early 2020. Second, shortly after the COVID-19 pandemic
hit the United States there was a surge in gun sales that was widely reported
in the media [20]. This was likely both a sign of increased anxiety about the
potential consequences of the pandemic on personal safety, but also further
stoked the fear of weapon-related violence. The murder of George Floyd at the
hands of a Minneapolis police officer and the resultant social unrest targeted
at the police more broadly may have further reinforced the need for people to
engage in violent “self-help” when it came to interpersonal disputes, consistent
with the work of Kirk and Papachristos on legal cynicism [18].1 The perceived
inability of the police to protect residents from gun violence may have been
reinforced by widespread discourse on the notion of de-policing across urban
communities, whereby officers were unwilling to engage in proactive tactics to
prevent or intervene in violence due, in part, to the backlash they faced in the
wake of high profile officer involved shootings and the ongoing social distancing

1Legal cynicism, in this instance, “refers to a cultural frame in which people perceive the
law as illegitimate, unresponsive, and ill equipped to ensure public safety” (page 1190) [18].
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efforts associated with the pandemic. Together, this suggests that the message
to communities was that gun crime was rising, people were arming themselves
at record numbers, and the police were either unwilling or unable to intervene
or investigate to prevent ongoing acts of violence.

Of course, it only does so much to hypothesize on all the various mechanisms
at play here. Such a theoretical framework motivates the empirical question at
hand: Is the recent increase in violence due to contagion? Answering this ques-
tion is a necessary first step before research is extended to under the mechanisms
that appear to explain the rise in gun violence, and whether theories that focus
on contagious shootings play a critical role in the recent surge in gun violence.

3 Methodology

3.1 Branching process model of the dynamic reproduction
number of shootings

We fit a Hawkes branching process [26, 2] to shooting events with intensity,

λ(x, t) = µf(x)hd(t)hm(t)hy(t) + (1)∑
t>ti

Rtigt(t− ti;ω)gx(x− xi;σ).

Here the background Poisson rate of events is assumed separable in space and
time, where f(x) models the spatial component of the background rate, fit
using a Gaussian mixture model (GMM), and hd, hm, and hy model day of
the week, monthly, and yearly trends in the background rate. The second
term in Equation 1 models contagion between events, where Rt is the dynamic
reproduction number [2]. Specifically, Rt is the expected number of secondary
or offspring shooting events initiated by an event (under the branching process
representation of the Hawkes process [50]). The temporal component in the
second term gt is assumed to be exponential. The spatial component gx is
assumed to be Gaussian. The Hawkes branching process is related to the SIR
model of infectious disease [40], where the linear model in Equation 1 estimates
new cases in the absence of finite population effects. The model is fit to the
data using an expectation-maximization algorithm as detailed in [21, 50, 2].

To construct confidence intervals for parameters, we simulate multiple real-
izations of the Hawkes process fit to shooting data and then re-estimate model
parameters to quantify uncertainty. The branching process representation of the
Hawkes process is used for simulation, where first background Poisson events are
generated from the Poisson process intensity µf(x)hd(t)hm(t)hy(t). Offspring
events are then iteratively added to the dataset, where each event generates
L ∼ Pois(Rt) offspring events with spatial coordinates determined by adding
random numbers drawn from gx to the parent event location and a random
number drawn from gt to the time of the parent event. To better match the
spatial distribution of events in the actual data, which lie on a street network,
we re-sample the original dataset coordinates using the EM estimation branch-
ing probabilities to assign spatial locations to the background events in each
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simulation (as is done in [26]). Locations of simulated contagion events are then
sampled from the continuous density gt(t− ti;ω)gx(x− xi;σ).

3.2 Spatial concentration of shootings

We also assess the yearly spatial concentration of shootings in each city by
estimating the Gini index of aggregated event counts in 500m x 500m grid cells.
We use a small-sample correction as outlined in [28] by first fitting a Poisson-
Gamma density to event counts and then estimating the Gini index as:

Ĝ =
1

N

(
2

(∑N
i=1(N + 1 − i)g(i)∑N

i=1 g(i)

)
−N − 1

)
, (2)

where gi is drawn independently in grid cell i from the estimated Gamma dis-
tribution, N is the total number of cells, and g(i) are sorted counts.

4 Data Sources

We use open source shooting data from Chicago2, Los Angeles34, New York5,
and Philadephia6. The events contained a date and time of the event, along
with the latitude and longitude of the location. Events without a location
were removed from the analysis. Overall the data consists of 10,715 events in
Chicago, 4,745 events in Los Angeles, 6,037 events in New York, and 7,489 events
in Philadelphia across 2016-2020. Because the Hawkes process is a continuous
model, exact repeat events (or events rounded to the nearest block) can cause
the bandwidth of the spatial kernels to become small or approach zero during
EM estimation. We therefore jitter the latitude and longitude locations with
Gaussian noise with mean zero and standard deviation 10−3 degrees, equivalent
to approximately 111m.

5 Results

In Figure 2 we display results of the goodness of fit of the Hawkes process
model fit to data from Chicago, Los Angeles, New York, and Philadelphia. We
present day of week, month of year, and yearly trends of the data compared
to 100 realizations of the estimated Hawkes model. We also plot, in Figure 3,
the distribution of shootings from 2016-2020 and an example realization from
the fitted Hawkes process. Overall we find that the Hawkes process provides a
plausible fit to the data in each city.

2https://data.cityofchicago.org/Public-Safety/Chicago-Shootings/fsku-dr7m
3https://data.lacity.org/Public-Safety/Crime-Data-from-2010-to-2019/63jg-8b9z
4https://data.lacity.org/Public-Safety/Crime-Data-from-2020-to-Present/2nrs-mtv8
5(https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Historic-

/833y-fsy8
6https://www.opendataphilly.org/dataset/shooting-victims
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To further assess the goodness of fit, we apply residual analysis and thin
the original shootings data by retaining events with probability λinf/λ(xs

i , t
s
i ),

where λinf is the infimum of the intensity on the domain of each city. When
the model is correctly specified, the thinned residual points are a realization of
a constant-rate Poisson process [45], whereas there will be an excess or deficit
of events in regions the estimated intensity under- or over-estimates the true
intensity. We can then compare the distribution of the thinned events to that
of a unit rate Poisson process to assess the goodness of fit of the intensity.
One way to make this comparison is using Ripley’s K function [39], the average
number of events K(r) within a radius r of each event. In Figure 2 we display the
average K-function for the thinned residuals (averaged over 100 thinned residual
realizations) along with the K-function of 100 simulated Poisson processes. In
Figure 2, we find that the average K-function of the thinned residuals of the
data is plausibly Poisson (with the exception of small scales in Chicago, where
some excess clustering is not explained by the model).

In Figure 4 we display the estimated time-varying reproductive number (Rt)
of shootings along with 95% confidence intervals. While Philadelphia and Los
Angeles have higher estimated reproduction numbers in 2020 compared to 2019
(significant at the .009 and .02 level respectively using a two-sided t-test), the
reproduction number in New York is estimated to have gone down in 2020 and
the differences in Chicago’s reproduction number over time are not statisti-
cally significant. In general, Philadelphia and New York have higher estimated
reproduction numbers than Chicago and Los Angeles. This could be due to
geographical differences between cities, such as the size of street networks. To
the extent contagion effects are less localized in Chicago and Los Angeles, our
methodology, which focuses on distance, is not well suited to detect non-local
effects.

One by-product of the EM estimation algorithm is that a probabilistic
branching structure is estimated alongside model parameters. We therefore
have an estimate of the number of events that are spontaneous (generated by
the background Poisson rate) vs. the number of events that can be attributed
to contagion. In Table 1, we show the estimated number of contagious vs. spon-
taneous non-contagious generated events for each city and each year. Here we
find that a majority of events are estimated to be spontaneous, across cities
and years, consistent with recent Hawkes process estimation of acoustic gun-
shot detection events [22]. At the same time we find higher levels of contagion
in the present study than in acoustic gunshot detection events and considerable
variation across cities in the level of contagion, from the highest average of 30%
in New York City to the lowest of 15% in Chicago.

In Figure 5 we display yearly estimates of the Gini index and in Figure 6
we display spatial locations of shooting hotspots that contain 25% and 50% of
events (the 25% and 50% percentages are selected using the convention estab-
lished by Weisburd [52]). Here we find that the concentration of shootings is
high across cities and years, where the Gini index is in the range of 0.65 to 0.85.
For reference, the Gini index ranges from 0 (spatially uniform) to 1 (complete
concentration in a single grid cell). We also find that concentration is consistent
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Figure 2: Hawkes process goodness of fit to event shootings 2016-2020. From left
to right, distribution of the number of events per day, per month, and per year in
the observed data (black) and 100 fitted Hawkes process simulations (blue). Far left:
K-function (black) of fitted Hawkes process thinned residuals of the shootings data
(thinned with probability λinf/λ(ti)). K-function for 100 realizations of a constant
rate Poisson process (blue). Radius r measured in degrees.

across years and that hotspots appear, for the most part, in the same locations
from year-to-year in each city. In Table 2, we display the percentage of hotspots
that are the same from one year to the next containing 50% of shootings. For
example, between 2019 and 2020, 62.5% of hotspots were the same in Los Ange-
les, 66.7% were the same in Chicago, and 58.5% and 86.7% overlapped in New
York and Philadelphia respectively.

6 Discussion

Understanding the potential causes underlying a recent surge in gun violence
in urban American cities is necessary for designing effective interventions. Here
we find that the contagious spread of violence—where prior shootings trigger
future gun violence—has played a mixed roll in the surge.

The four cities examined here all display some measure of contagious spread
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Figure 3: Scatter plot of shooting event lat/long coordinates from the 2016-2020 data
(black) and scatter plot of event coordinates of one realization of a simulated Hawkes
process (blue) fit to shootings data.
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Figure 4: Estimated dynamic reproduction number, Rt, of shootings for each year
along with 95% confidence interval.

of gun violence, but contagious events are the minority of shootings. Overall in
2020, contagious events made up between 19% (Chicago) and 33% (Philadel-
phia) of all shootings. The remainder should be considered spontaneous or
non-contagious events tied to structural features of the environment. Surpris-
ingly, the relative volume of contagious violence moved in different directions
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Chicago Los Angeles New York Philadelphia

Year Sp. Cnt. % Sp. Cnt. % Sp. Cnt. % Sp. Cnt. %
2016 2349 370 14% 829 171 17% 851 357 30% 947 286 23%
2017 1740 330 16% 734 167 19% 682 284 29% 919 276 23%
2018 1547 271 15% 714 156 18% 628 323 34% 1000 409 29%
2019 1402 226 14% 634 170 21% 666 301 31% 1044 406 28%
2020 2000 458 19% 791 355 31% 1443 499 26% 1483 718 33%

Table 1: Estimated number of spontaneous (Sp.) events vs. the number and percent-
age of contagion (Cnt.) events.

New York Philadelphia
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Figure 5: Estimated yearly Gini index, Ĝ, of shootings using a grid of 500m x 500m
cells. 95% confidence interval shown in blue.

depending upon the city in question. Contagious shootings made up a greater
share of such violence in Los Angeles and Philadelphia in 2020 compared with
2019 (increasing from 21% to 31% and 28% to 33% of events, respectively),
remained statistically unchanged in Chicago (increasing non-significantly from
14% to 19% of events), and actually went down in New York City (decreasing
from 31% to 26% of events).

The bigger shift (by volume) in shootings is tied to structural features of the
environment and an overall increase in the background temporal intensity of
events. This is reflected in the high percentage of spontaneous events in Table 1
and the high and temporally stable Gini index of spatial concentration in Figure
5. Non-contagious or spontaneous events made up between 67% (Philadelphia)
and 81% (Chicago) of all shootings in 2020. With respect to time, across all
four cities there was an abrupt shift to much higher baseline shooting intensity
between 2019 and 2020 (see Figure 2). In Chicago, the shift was to a baseline
intensity last exceeded in 2016. In the remaining cities, the shift was to a
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Figure 6: Hotspots (1km x 1km) each year accounting for 25% of shooting events
(red) and 50% of shooting events (blue and red combined).

baseline intensity higher than anything seen in the last five years.
It has long-been recognized that crime is unevenly distributed across space

forming areas of high and low concentration [52, 28]. Indeed, crime hotspots
are recognized at all geographic scales of resolution [6]. The relative stability
of geographic crime patterns has received less attention overall, though this re-
mains an important issue for designing crime prevention strategies. In [29] it
is suggested, for example, that there is a tradeoff between the concentration
of crime in space [52] and the stability of the associated hotspots. In general,
at fine spatiotemporal scales crime is much more concentrated, but hotspots
also frequently shift from place to place (see also [51]). At coarse spatiotem-
poral scales, crime is more diffuse, but the resulting hotspots also rarely move
around. Braga and colleagues [4] examined the spatial stability of gun violence
in Boston from 1980-2008. Their results “...suggest that gun violence upswings
and downturns are largely concentrated at a small number of gun violence hot
spots that intensify and diminish over time”. It is possible that gun violence
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Year Los Angeles Chicago New York Philadelphia

2016-2017 71.59% 74.19% 49.40% 67.65%
2017-2018 57.02% 63.01% 59.02% 80.65%
2018-2019 57.00% 70.27% 57.69% 69.70%
2019-2020 62.50% 66.67% 58.46% 86.67%

Table 2: Stability of hotspots over time. Percent overlap of hotspots from year to
year containing 50% of shootings.

trends at these places follow trajectories that are consistent with a spatial dif-
fusion process” (p. 50). Moreover, they conclude that less than 3 percent of
micro places in Boston had volatile levels of gun violence.

The policy implications of our findings are two-fold. First, increases in
the proportion of contagious gun violence may be tackled through short-term,
spatially-focused efforts to disrupt contagious spread. In the case of gang-related
violence, this might be achieved through community-led violence interruption
efforts [34], or traditional crime suppression [42]. Second, the jump in non-
contagious spontaneous events are likely to require efforts to achieve larger-scale,
structural changes in the environment and routine behaviors, such as remediat-
ing vacant lots and abandoned housing [23]. To the extent that the surge in 2020
was tied to routine activities [9] unique to the pandemic, a return to “normal
life” might help cities naturally reverse course. If structural changes underlying
the surge have become more embedded, then it may take a considerable period
of time to return to the conditions that prevailed before 2020. In Chicago, for
example, it took approximately three years to see a decrease in baseline crime
intensity after the 2016 spike in shootings, which was of a similar magnitude to
the recent increase. All things being equal, we might expect a return to 2019
levels to take at least as long without any specific strategies to improve local
conditions.

This study is not without limitations. First, while research suggests the
study of fatal and nonfatal shootings is useful for understanding urban violence,
public discourse centered on urban violence has largely focused on the increase
in homicides across numerous U.S. jurisdictions across 2020 and 2021. Because
of the rarity of homicide events in space and time, the analyses presented in
the current study were not well suited for a strict focus on homicide. Second,
research suggests a possibility that contagious violence may spread through
social networks that are non-local, whereby shooting events in one part of the
city may motivate shootings in distant areas. Our focus on spatiotemporal
patterns in gun violence would not capture such events.

A further limitation of our analysis is that we did not explicitly account for
changes in the intensity of shootings due to exogenous shocks, such as pandemic
related lock-downs or protests. Crime contagion can be facilitated by multiple
distinct processes and may be connected simultaneously to unique features of
individual routine activities, social networks and community social norms (e.g.,
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about retaliation). As a result, endogenous or exogenous changes in any of
these domains may also have an indirect impact on crime contagiousness. For
example, the wide-spread ‘lock down’ and social distancing practices adopted
in response to the global pandemic in 2020-2021 are known to impact social
dynamics in general (e.g., urban mobility). It is reasonable to expect that these
changes impacted crime contagiousness. Current evidence suggests that the
impact of COVID-19 ‘stay-at-home’ orders on crime volume was generally more
muted than expected [27, 35]. It also appears that criminal street gangs also
did not immediately take advantage of the pandemic to expand their activity
[16]. If the pandemic is a primary underlying cause of the increase in violence
contagiousness, observed in three of the four cities in 2020, then we can hope
that a return to more normal social conditions may lead to a return to more
‘normal’ patterns of violence.

However, in at least two of these cities (Los Angeles, Philadelphia) the in-
creases in crime contagiousness in 2020 appear to be part of a trend stretching
back to at least 2018. In New York, the decrease in crime contagiousness also
appears to be part of a pattern of decline (or reversion to the mean) after a peak
in 2018. These patterns would seem to implicate changes in social dynamics that
predate the pandemic that are not necessarily the same across settings. Future
research will be required to tease apart what was happening on the ground.
Among many possible avenues of investigation, we believe it is worth assessing
the role of changes in the size and organization of gangs, the availability of guns
and higher caliber ammunition [3], the perceived legitimacy of the police and
government [18, 19], and the continued infiltration of social media into daily
life.
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