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Abstract—We review several concepts and modeling techniques
from statistical and machine learning that have been developed
to forecast recidivism. We show how these methods might be
repurposed for forecasting police officer use of force. Using
open Chicago police department use-of-force complaint data for
illustration, we discuss feature engineering, construction of black-
box models, interpretable forecasts, and fairness.
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I. INTRODUCTION

A number of statistical and machine learning methods for
forecasting recidivism and informing parole decisions have
been developed over the past decade. Decision tree based
models such as random forests [2] are used to forecast risk
of recidivism and have been shown to lead to a reduction in
re-arrests [3]. Interpretable recidivism forecasts [17] provide
easy to read risk “score cards” as an alternative to black-
box models, given the high-stakes nature of the application.
Important questions of fairness arise in constructing models
of recidivism. Research has shown that false positive rates are
higher for Black individuals in models used in practice [7]
and methods have been constructed to mitigate bias [4]. While
there has been some debate on the matter, the latest research
indicates that algorithms have the potential to be more accurate
and fair than humans in making parole decisions [9].

A problem that is mathematically similar, though one that
has received less attention from the machine learning com-
munity, is forecasting police officer use of force, complaints,
and misconduct. Recent research has shown that officers with
negative marks on their record (complaints, firearm discharges,
etc.) are 3 times more likely to shoot in the line of duty [13].
Other research has shown that officer shootings, misconduct
and use of force exhibit network effects, where officers are
at greater risk of being involved in these incidents when they
socialize with officers who have a history of misconduct and
complaints [12, 15, 18]. Statistical methods including survival
models [12], logistic regression [18], and point processes [15]
have been recently introduced for modeling officer-involved
use of force and shootings.

Our goal in this paper is to review some of the machine
learning techniques and concepts from criminal justice fore-
casting and show how they might be repurposed for officer risk
assessments. We first provide an overview of the data we use
in this paper in Section II. In Section III, we discuss feature
engineering of risk factors that are correlated with use of force

complaints. In Section IV, we investigate and compare the
performance of several standard machine learning models for
forecasting use of force complaints. In Section V, we show
how interpretable models can be constructed of officer risk
assessments and in Section VI we discuss issues of fairness
that may arise when constructing models for officer complaints
and misconduct.

II. DATA ON OFFICER USE OF FORCE IN CHICAGO

In the current study we analyze use of force complaint
data from the Chicago Police Department collected through
the Citizen’s Police Data Project [1]. The data includes de-
mographic features of each officer (age, gender, race), demo-
graphic features of the complainant, type of complaint, date
the incident occurred, and identifiers for all officers named in
the complaint. Overall, we analyze data through the end of
2017 containing 32,351 complaints of excessive use of force
involving 14,914 officers. In many cases, multiple officers are
named in a single complaint which allows the construction of
officer co-complaint networks [12, 18], such as the network
shown in Figure 1.

III. RISK FACTORS ASSOCIATED WITH USE OF FORCE
COMPLAINTS

To illustrate the construction of officer risk assessment
modeling, we use three types of features: 1) demographic
features such as officer age, sex and race, 2) network features

Fig. 1: Network where links between officers with more than
1 common complaint are shown.
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that capture the complaint history of officers in a target
officer’s social network [12, 18] and 3) Hawkes point process
features that capture increases in risk following past incidents
[10, 15].

A Hawkes process is defined in terms of its conditional
intensity, which can be defined for officer i as,

λi(t) = µi +
∑
t>tij

θw exp(−w(t− tij)). (1)

Here j indexes the use of force incidents in which officer i was
involved, µi is a baseline rate of incidents, θ is a parameter
determining by how much the intensity is elevated after each
event and w determines the time scale over which elevated
risk decays back to the baseline rate µi.

As is done in [10], we take a supervised learning approach
and define point process features for a logistic regression
(GLM) estimated each month m to forecast the number of
excessive use of force complaints for each officer in the
following month (using all data historically available).

f i(w,m) =
∑
m>tij

θw exp(−w(m− tij)) (2)

The feature for f i(w,m) is defined for each officer in
the month m currently being forecasted with varying w =
.1, .01, .001. The coefficients θ in Equation 1 are estimated
within the logistic regression.

Similarly, network point process features can be defined by
summing point processes over neighboring nodes in the social
network:

gi(w,m) =
∑

m>tkj ;k∼i

θw exp(−w(m− tkj )). (3)

Here k ∼ i indicates that k and i are neighboring nodes
in the officer excessive use of force network (e.g. officer k
and i were co-complainants at some point prior to month m).
in addition to the point process features and demographics,
we also include count based features including the number
of complaints in the past year and number of total historical
complaints.

We fit a GLM model to the data to forecast monthly
complaints from 2010 to 2017, where the first 50 months
are used for training and subsequent months are used for
evaluation. In Table I we show the estimated coefficients
for the GLM model forecasting the number of complaints
for each officer in each month. The point process feature
(w = .001), neighbor point process feature (w = .1), sex, age,
and total complaint count are all highly statistically significant.
None of the race indicator variables are statistically significant
indicating that officers that are male, younger, and have a
history of complaints are most likely to have excessive use
of force complaints in the near future.

In Figure 2 we display a ROC curve for the GLM model of
monthly officer complaints. In Chicago, 1% of officers account
for 16% of complaints and 10% of officers account for 72%
of complaints.
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Fig. 2: ROC curve for GLM using Hawkes process, co-
complaint, and demograhic features.

TABLE I: Estimated coefficients of GLM model of officer
excessive use of force.

estimate st. err. z val. p-val.

(Intercept) -1.7038 0.1291 -13.1937 < 10−4

neighbor complaint count -0.0004 0.0032 -0.1291 0.8973
neighbor Hawkes (w = .1) 0.2629 0.1000 2.6276 0.0086
neighbor Hawkes (w = .01) -0.0919 0.0429 -2.1424 0.0322
neighbor Hawkes (w = .001) -0.0030 0.0095 -0.3209 0.7483
neighbor complaint/year 0.0055 0.0105 0.5264 0.5986
complaint count 0.0265 0.0072 3.6777 0.0002
Hawkes (w = .1) -0.6086 0.3807 -1.5987 0.1099
Hawkes (w = .01) 0.3682 0.1553 2.3714 0.0177
Hawkes (w = .001) 0.4662 0.0315 14.8065 < 10−4

complaint count year -0.0368 0.0475 -0.7741 0.4389
Female -0.3360 0.0534 -6.2858 < 10−4

Black 0.1818 0.1053 1.7276 0.0841
Hispanic 0.1234 0.1043 1.1836 0.2366
Native American 0.3161 0.2580 1.2253 0.2205
Race Unknown -9.0305 72.5484 -0.1245 0.9009
White 0.0448 0.1014 0.4422 0.6583
Age -0.0858 0.0022 -39.8419 < 10−4

IV. MACHINE LEARNING BASED FORECASTS

Next we evaluate several standard machine learning models
for the purpose of forecasting monthly excessive use of force
complaints. To our knowledge there has been limited work
in constructing machine learning models (e.g. decision trees,
neural networks) for officer risk assessments, with only one
previous study that focuses on using random forests [5].

Here we utilize the H2O Auto-ML workflow [8], which
is a unified interface for parameter tuning and comparison
of a variety of models including random forest, boosting,
and feed-forward neural networks. In comparison to logistic
regression, decision tree ensembles (such as random forest and
boosting) capture nonlinear interactions that may be present in
the data through a sequence of binary if/else conditions that
recursively partition the data into risk groups. Feed-foward
neural networks also capture non-linear effects in the data,
although they do so through a single model (rather than an
ensemble) comprised of compositional layers that alternate be-
tween a linear mapping and an non-linear sigmoidal activation
operation.



We trained autoML using the demographic features, the
number of historical complaints, and point processe features
to forecast the number of complaints in the each month of the
training data. In the experiment we specified the maximum
number of models, excluding the Stacked Ensemble models,
to be 25. The autoML training took 7 hours and 48 minutes to
run on a Lenovo P51s system with 16gb of RAM. In Table II
we display the leaderboard results outputted by autoML after
training, where we find the best performing model was boosted
decision trees (GBM) with the best AUC, logloss, RMSE and
MAE. Here we find that the AUC=.82 is much better than
random chance (AUC=.5), indicating that the algorithm can
correctly identify the more riskier officer out of a randomly
chosen pair 82% of the time. We note that the ranking of
models in Table II is meant for illustrative purposes and the
results depend on the parameters explored by autoML. The
leaderboard rankings would be subject to change if autoML
was used with a higher maximum number of models or an
alternative parameter grid search was employed.

V. INTEPRETABLE MODELS

One drawback of the machine learning methods in the
previous section is that they are black-box models that can
be difficult to explain and interpret. To address this concern
in high-stakes applications such as forecasting recidivism, an
interpretable “risk-slim” model was introduced in [14] that
yields simple, yet accurate risk score cards. The method works
by first generating a large candidate set of binary features X
and then finding a super-sparse set of integer coefficients θ
that solve the following optimization problem:

min
θ∈Zn

N∑
i=1

1[yiX
T
i θ ≤ 0] + C0‖θ‖0 + C1‖θ‖1.

Here the 0-norm encourages sparsity, whereas the 1-norm
encourages the coefficients to be small. The problem can
be cast as a mixed-integer linear programming problem and
solved efficiently using CPLEX [6].

In the training risk-slim algorithm, we processed our dataset
by binarizing all categorical and real-valued features. Certain
features such as sex and race are already in this form. For
real-valued feature f , we defined disjoint intervals Uj covering
the domain of f and then constructed binary features xjf =
1{f ∈ Uj} based on a feature being contained or not in a
given interval.

In Table III we display an example score card for risk-slim
trained on Chicago excessive use of force data. The model
outputs an interpretable score that is computed by answering
yes or no to a series of 5 questions. For example, if an officer
is age 30, has 7 complaints total, 3 per year, and 8 complaints
per year for officers in their social network, then the score
is 3 + 0 + 0 − 2 + 0 = 1. In Table III we also see that the
score is highly correlated with empirical risk, for example for
officers with a score of −4 only .03% have a complaint that
month, whereas 23% of officers have a complaint the next
month when their score is 3.

Fig. 3: Density of use of force incidents in Indianapolis, which
are concentrated Downtown and on the near east side.

VI. FAIRNESS

Reasearch into fairness of machine learning models of
recidivism has shown that models can be heavily biased, with
false positive rates mismatched across racial or other protected
groups [7]. Similar mismatches in false positive rates or other
fairness metrics have the potential to arise in forecasts of
officer use of force and misconduct. For example, suppose we
define the high-risk threshold for the GLM model in Section III
above to be p = .3 and that we define the protected variable to
be age (either above or below 35). In that case we find the false
positive rate of the model for age≥35 to be 80.0%, whereas
the false positive rate for officers with age<35 is 89.8%. In
this case the model is biased against younger officers and is
more likely to flag them as higher risk when they are not.

However, one can argue that the stakes, at least internally
(with respect to the officer) are lower, where a high risk score
might result, for example, in additional procedural justice
training. In comparison, a false positive in the case of a parole
decision leads to much greater harm to the individual who is
kept imprisoned, even though they would not have committed
a crime upon release. We also note that internal fairness con-
siderations (within the police department) need to be weighed
against bias of outcomes that are external to the department.
In officer involved fatal shootings, Black civilians are twice as
likely as white civilians to be unarmed [11]. In Indianapolis,
Black citizens are the subject of 53% of use of force incidents,
while comprising 28% of the population. Furthermore these
incidents are concentrated in certain geographies in the city
(see Figure 3). New algorithms are likely needed for balancing
external, city-wide fairness of policing with internal fairness
of risk assessments.

VII. CONCLUSION

We reviewed several machine learning concepts and meth-
ods and showed how they can be repurposed for forecast-
ing police excessive use of force. Using features on officer



TABLE II: Auto-ML leaderboard results when trained on officer excessive use of force.

Method AUC Logloss RMSE MSE

GBM-grid–1-AutoML 8.22 · 10−1 1.61 · 10−2 4.93 · 10−2 2.43 · 10−3

GBM-5-AutoML 8.00 · 10−1 1.62 · 10−2 4.96 · 10−2 2.46 · 10−3

StackedEnsemble-AllModels-AutoML 7.94 · 10−1 1.75 · 10−2 4.97 · 10−2 2.47 · 10−3

GLM-1-AutoML 7.79 · 10−1 1.70 · 10−2 4.94 · 10−2 2.44 · 10−3

DRF-1-AutoML 7.33 · 10−1 1.99 · 10−2 5.16 · 10−2 2.67 · 10−3

StackedEnsemble-BestOfFamily-AutoML 7.29 · 10−1 1.81 · 10−2 4.96 · 10−2 2.46 · 10−3

XRT-1-AutoML 7.16 · 10−1 2.02 · 10−2 5.12 · 10−2 2.62 · 10−3

DeepLearning-1-AutoML 6.48 · 10−1 1.91 · 10−2 5.16 · 10−2 2.67 · 10−3

DeepLearning-grid–3-AutoML 5.12 · 10−1 2.01 · 10−2 4.93 · 10−2 2.43 · 10−3

TABLE III: Interpretable model of officer excessive use of
force risk.

Age ≤ 40 3 points +.....
Age < 55 and ≥ 40 2 points +.....

# complaints ≤ 5 -1 points +.....
# complaints < 5 per year -2 points +.....

# complaints in officer network < 5 per year -1 points +.....

ADD POINTS FROM ROWS 1 to 5 SCORE = .....

Score -4 -3 -2 -1 0 1 2 3

Risk < 1% < 1% < 1% 1% 2% 5% 16% 23%

demographics, social networks, and complaint history, we
showed that black-box models can capture a high percentage
of complaints when flagging a small percentage of officers.
Super-sparse integer models can be constructed that produce
easy-to-interpret score cards. Finally, issues of fairness may
arise both internally within the police department, as well as
externally in terms of disparate impacts of policing towards
certain groups and geographical areas.

Recent research has shown that procedural justice training
can reduce use of force incidents by 6.4% and complaints
by 10% [16]. Statistical and machine learning models may
help facilitate procedural justice and implicit bias training, by
helping to determine when officers need more training or other
interventions to reduce risk of excessive use of force.

Future research should focus on incorporating dynamics into
officer risk assessments, as risk has been shown to propagate
over time in social networks [15], designing methods that can
mitigate overall (city-wide) bias and harm caused by policing,
while balancing fairness across citizen groups, geographies,
and internally within a police department, and transitioning
research to practice through field implementations and trials.
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