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Introduction

These lecture notes serve as a companion to the text, “The Rules of Contagion”
by Adam Kucharski [19]. The novel (which I will refer to as RoC) contains
many great examples of contagion processes across various disciplines, from
infectious diseases to the spreading of gun violence. The book also provides
helpful intuition for understanding mathematical models of contagion. However,
many of the details of these models are left out, since the book is intended
for a wide audience. The purpose of these lecture notes is to provide more
of the mathematical details of some of these models of contagion, to outline
computational tools for the simulation of such models, and to give details on
how they can be fit to data.

1 Difference equations, differential equations and
the SIR Model

Consider the UK home ownership example on p32 of RoC (page numbers may
vary based on your version of the book). In that model, each year a fixed fraction
(which I will call α) of non-homeowners purchase a home. In each subsequent
year, again an α fraction of non-homeowners purchase a home. Letting Yn

denote the fraction of homeowners in year n (with Y0 = 0), we can model such
a process with a difference equation:

Yn+1 = Yn + α(1− Yn). (1)

Here the fraction of non-homeowners is 1 − Yn, and in year n α of them be-
come homeowners in year n + 1 (which gets added to the number of current
homeowners, Yn).

In Figure 1, we plot the evolution of the number of homeowners Yn over time,
or in other words successive iterations of the process. We observe the flattening
of the curve that Kucharski discusses, which is not due to contagion (this model
is random), but is instead due to the fact that there are less non-homeowners
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Figure 1: Plot of Yn vs. n for the homeowner difference equation model with α = .05.

that can become homeowners randomly at each subsequent iteration. You may
have seen difference equations (also called recurrence equations) before. One
famous example is the Fibonacci sequence Fn+1 = Fn+Fn−1 where F1 = F2 = 1
(e.g. 1, 1, 2, 3, 5, 8, 13, ...). While this sequence keeps growing, the ratio

Fn+1/Fn converges to the “golden ratio” 1+
√
5

2 .
A related type of model is called a differential equation. Whereas the dif-

ference equation models time over discrete steps (for example n above might
denote a year), a differential equation models how a quantity changes over time
continuously. There are several advantages of this approach, one being that we
can easily change the time frame we wish to investigate (for example, what if we
want to analyze home ownership per month instead of per year, we don’t want
to have to create a new model each time we change the timescale). Another
advantage is that we can use tools for the theory of differential equations to
analyze the models (which may allow us to answer questions such as, “when
will the virus peak”). However, one thing to keep in mind is that we will often
simulate the solutions to differential equations on a computer by approximating
them with difference equations.

1.1 Susceptible-Infected (SI) Model

Kucharski notes that contagion processes tend to follow a S-shaped curve, unlike
the curve in Figure 1. The SI model is maybe the simplest model that generates
such a curve. Let S(t) denote the number of susceptible individuals at time t
and I(t) denote the number of infected (who never recover), out of a population
size of N = S(t)+ I(t). Here we could think of “infection” through Kucharski’s
VCR example, where we assume that initially very few people bought a VCR,
then word spread and people began to purchase them because their friends had
one, and finally once people buy a VCR they have it forever (with any model
we could debate whether or not it’s realistic). Let us assume that each VCR
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owning individual has β contacts per unit time, of which the fraction S(t)/N
are susceptible, and therefore each VCR owner infects dtβS(t)/N individuals
who purchase a VCR in a small unit of time dt. Here we are assuming that
the population is “well-mixed,” and everyone can randomly come in contact
with everyone else. We are also assuming that a contact between an I and S
individual definitely leads to an infection.

Because there are I(t) such VCR owning individuals, the total number of
new VCR “infections” in a small unit of time is dtβS(t)I(t)/N . This leads to
the following differential equation for the rate of change of infected individuals:

dI

dt
= β

SI

N
. (2)

In this example, there is conservation of the number of individuals, and there-
fore,

dS

dt
= −βSI

N
. (3)

A few things to note. First, often S(t) may be shortened to S, even though
these mean the same thing. Also, sometimes these differential equations may
be written in terms of the population fraction s = S/N and i = I/N , yielding

ds

dt
= −βsi, di

dt
= βsi.

1.2 Finite difference approximation

How do we know these equations yield the S-shaped curve discussed in the book?
One way might be to analyze the equations and derivatives of the functions (for
example, the sign of the second derivative can tell us about a switch from concave
up to down). However, for many models this may be difficult or impossible, in
which case we resort to computer simulation to gain insights into the model.

One method for approximating the solution to a differential equation is
known as the Euler method. Suppose we are given the differential equation:

dx⃗(t)

dt
= f(x⃗(t)). (4)

The (forward) Euler method replaces the differential equation with the difference
equation:

x⃗(tn+1)− x⃗(tn)

∆t
= f(x⃗(tn)), (5)

where ∆t = tn+1 − tn. We can then move all the terms at time tn to the right
hand side and we are left with:

x⃗(tn+1) = x⃗(tn) + ∆tf(x⃗(tn)), (6)

which we can iterate numerically on a computer starting with the initial condi-
tion x⃗(t0) = x⃗0.
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Several things to note. First, the method is called forward Euler because
we approximate the derivative at the previous time point and then project the
solution forward. This approach can suffer from what’s called instability, which
shows up as high frequency oscillations that shouldn’t be there. In such a
scenario one should either reduce the time step ∆t until the oscillations go away
or switch to backward Euler (that involves solving a nonlinear equation). A
second thing to note is that we are using Euler for its simplicity, however there
are other methods that are more accurate and have other desired properties.
For a good introduction to numerical approximation of differential equations,
see Burden and Faires [12].

1.3 SIR Model

With the forward Euler method, we can now simulate solutions of the Kermack
and McKendrick Susceptible-Infected-Removed (SIR) model [17]:

dS

dt
= −βSI

N
, (7)

dI

dt
= β

SI

N
− γI, (8)

dR

dt
= γI. (9)

The SIR model is the same as the SI model, with the exception that infected
individuals are removed at a rate γ (i.e. the probability of an individual being
removed in a time interval δt is γδt). In the VCR example above, this could re-
flect individuals replacing a VCR with a DVD player, or in the case of infectious
diseases individuals may recover (or the disease could be fatal). The forward
Euler iteration for approximating the solution is given by:

Sn+1 = Sn −∆tβ
SnIn
N

, (10)

In+1 = In +∆t(β
SnIn
N
− γIn), (11)

Rn+1 = Rn +∆tγIn, (12)

which is found by plugging in the finite difference in Equation 5 and solving
for the variables at time step n + 1. One then just needs to specify the initial
conditions S0, I0, R0, the parameters β, γ,N and the discrete time step length
∆t in order to start the iteration.

Sometimes SIR-type models are called ”compartment” models and are rep-
resented by a picture as is done in Figure 2. Here each compartment represents
each type of individual (susceptible, infected, removed) and arrows indicate
movement of the population from one compartment to another at the specified
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Figure 2: SIR model represented through compartments.

rate. Compartment diagrams can be useful when more complexity is added to
the model.

In the mathematical epidemiology literature, models can often have many
compartments. Consider a disease like COVID-19 and how SIR may be an
over-simplification. First, COVID-19 has an incubation period before a person
is able to transmit the disease to others. In this case it is common to add and
“exposed” E compartment such that the flow is given by S → E → I → R. Such
a model is called “SEIR” and was a popular choice for a number of COVID-19
forecasting dashboards, given by the following equations:

dS

dt
= −βSI

N
, (13)

dE

dt
= β

SI

N
− µE, (14)

dI

dt
= µE − γI, (15)

dR

dt
= γI. (16)

where E tracks the number of exposed and µ is the incubation rate. One can add
more compartments to make the model more realistic, such as compartments
for asymptomatic cases, quarantining cases, hospitalizations, and deaths. In the
next chapter we will look at probabilistic models of contagion, but later on we
will connect differential equation (compartment) models to their probabilistic
counter parts.

1.4 Chapter 1 Exercises

1a. Simulate the SI model in Equations 2-3 with forward Euler using parameters
β = .005, N = 1000, S0 = 999, I0 = 1 and ∆t = 1 for 3000 iterations. Make a
time series plot of S and I vs time and label the S and I curves.

1b. As mentioned in RoC, the SI model satisfies the property that new infections
(or adoptions in marketing) grow fastest when 21% of the population have been
infected (regardless of the parameters). Verify this is true numerically for the
simulation in 1a. In particular, define the variable Pn = βSnIn/N representing
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new infections. This will be growing fastest when the first derivative has a maxi-
mum, where the derivative can be approximated by dPn = (Pn+1−Pn−1)/(2∆t).
So in other words, make a plot of dPn and find the time when dPn is largest.
At that time check that In/N ≈ .21.

1c. Prove that 1b is true, in particular that I/N = (3−
√
3)/6, when the second

derivative of dI/dt is zero. (Hint: try differentiating the SI equations and then
plugging them back in to simplify).

2. Simulate the SIR model with N = 75000, I0 = .5, S0 = N − I0, R0 = 0,
γ = 5.6, β = N ∗ 8 ∗ 10−5, ∆t = 1/7 (in weeks) and run the simulation for 50
weeks (parameters recommended from [1]). Next download the 1906 Bombay
plague data from canvas (data can also be found in the R package “primer”).
On the same graph, plot new deaths per week from the data alongside γI(t)
to show the fit is reasonable. Note, however, that even though the model fits
the data well, the parameters may not be realistic (for example the population
was larger in 1906). We will see later how parameters can be estimated to fit a
model to data.

3. Consider the SIR model and suppose now there are 2 types of infected in-
dividuals, those that are symptomatic and those that are asymptomatic. Let’s
assume that both are removed at the same rate, however the asymptomatic
group have a different (potentially larger) contact rate with susceptible individ-
uals. How could you modify the SIR equations to capture such a scenario?

2 Reproduction numbers and random networks

A critical parameter to understanding the spread of a contagion process is the
“reproduction number” R. In the case of a single infected individual in a sus-
ceptible population, the initial reproduction number is called R0, and represents
the average number of people that first person will directly infect. For conta-
gion processes, if R0 > 1, then the epidemic will tend to grow (exponentially),
if R0 < 1 then the epidemic will tend to subside after a few generations.

Kucharski states four factors that can affect R: duration (how long a per-
son is contagious), opportunities, transmission probability, and susceptibility.
Different interventions and disease characteristics can impact these factors. For
example, opportunities involve contacts between 2 or more individuals. When
someone quarantines this reduces opportunities for transmission. On the other
hand, wearing a N95 mask doesn’t reduce contacts, however it can lower the
transmission probability of a disease like COVID-19. When people are vacci-
nated, this may reduce the number of susceptible individuals.

In this chapter we will study simple branching processes, which are proba-
bilistic versions of the SIR model that focus on individuals and random transmis-
sion related to the reproduction number, rather than tracking the deterministic
population fraction of infected individuals, as is done with SIR. We will also
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look at simple random graph models for social contacts on which a contagion
processes might spread. First we will review some basic probability distribu-
tions.

2.1 Review of probability

2.1.1 Binomial random variable

Suppose we flip a fair coin. Then the outcome will sometimes come up heads,
and sometimes tails. If let X be 1 when the coin is heads and 0 when it lands
tails, thenX can be modeled by a Bernoulli random variable with parameter p =
1/2. Here we assume that the flips are iid, e.g. independent (they don’t effect
each other) and identically distributed (p doesn’t change). In other situations p
may not be 1/2, but the random variable we are interested in is still Bernoulli.
For example if we buy a raffle ticket out of 1000 tickets, then p = 1/1000 (the
probability that we win).

If we are interested in Y =
∑N

i=1 Xi, the sum of successes over N Bernoulli
experiments, then that random variable is called Binomial. For example, if we
are going to play roulette 10 times and bet on 17 each time, then N = 10 and
p = 1/38 and Y is the number of times the wheel lands on 17 over the 10 spins.

Recall that the expected value of a random variable, is determined by

E[X] =
∑
x

xp(x) (17)

where the sum is taken over all possible outcomes x for X. In the case of the
Bernoulli random variable, E[X] = 1 · p + 0 · (1 − p) = p. Given the expected
value µ = E[X] or a random variable, the variance of a random variable is
defined as:

σ2 = V ar[X] = E[(X − µ)2] (18)

and measures how much the random variable tends to fluctuate about its mean.
With a little algebra, one can show that for the Binomial random variable
p(x) =

(
N
x

)
px(1− p)N−x, µ = Np and σ2 = Np(1− p).

When we have data samples (observations) Xi, we often estimate the mean
and variance. In that case we calculate the sample mean and sample variance:

µ̂ =
1

N

N∑
i=1

Xi (19)

σ̂2 =
1

N − 1

N∑
i=1

(Xi − µ̂)2. (20)

2.1.2 Poisson random variable

Imagine that a person is infected and comes in contact with 100 people in a day.
Let us assume that for each contact the probability of transmission is p = .05
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and that contacts are iid. This could maybe apply to situations like a grocery
checkout, where each contact is similar in characteristics and duration. Let us
further assume that the person is only infectious for that one day. Then in this
simplified scenario, the number of secondary infections caused by the person
is a Binomial random variable with N = 100 and p = .05. On average we
would expect µ = Np = 100 · .05 = 5 secondary infections, so we would say the
reproduction number is R = 5.

For a Binomial random variable when N is large, p is small, and λ = Np
is moderate, we often switch to using a Poisson random variable. The Poisson
random variable takes on values that are non-negative integers with probability
p(x) = λxe−λ/x!. The reason we might use a Poisson random variable, rather
than Binomial, is that we might not know precisely what N or p are, but we
can observe the number of infections. The Poisson random variable can model a
variety of phenomena, such as the number of soccer goals in a world cup match,
the number of plane crashes in a year, etc. The defining characteristic of a
process that is Poisson is that there are many opportunities (N) for something
to happen, and a small independent probability (p) each time that they do
occur. In the case of soccer, in each minute there is a small probability of a goal
occurring and there are N = 90 minutes in a game. With some algebra you can
show that for a Poisson random variable, µ = σ2 = λ.

2.1.3 Negative binomial random variable

Let’s consider a random variable, Xi, representing the number of COVID-19
infections caused directly by person i in the population in Boston during 2020.
One way to check whether this random variable is Poisson would be to computer
the sample mean and variance, µ̂ and σ̂2, and see if they are about equal.
However, my guess is that this would not be the case, and σ̂2 would likely be
larger.

One reason for this is due to “super-spreaders,” which Kucharski discusses
in RoC. A 57 year old professor teaching remotely on zoom with no children in
the house will not have the same risk of spreading COVID-19 as a 10 year old
child that has in-person school, sports and play dates, some without a mask or
distancing. In this situation, we may switch from a Poisson random variable to
a negative Binomial random variable, where

p(x) =

(
x+ r − 1

r − 1

)
(1− p)xpr

and µ = pr/(1 − p), σ2 = pr/(1 − p)2. When the parameter r is large then
the Negative Binomial approaches Poisson, but for small r then the Negative
Binomial will be “over-dispersed”, meaning the variance is larger than the mean.

For a further reference providing an introduction to probability, see for ex-
ample [27].
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2.2 Branching processes

The SI and SIR models in Chapter 1 are called “mean-field” models, because
random fluctuations are averaged out and the remaining models are determin-
istic. Such models are appropriate when the number of infected and susceptible
are large and the population is well mixed (everyone can come in contact with
everyone else). However, initially after “patient-zero” is infected, what happens
to the outbreak? Does it grow into a pandemic? Is it contained in one region
and prevented from spreading? Does it fail to spread and die out on its own?

In the early stages of contagion, or in later stages near-elimination, it is
useful to switch to stochastic (random) models that can help us quantify the
probability of the above events. A branching process is a model in which in-
fected individuals in one generation of disease transmission probabilistically in-
fect more individuals in the next generation. Branching processes are also used
to model population growth, where reproduction number could instead repre-
sent the average number of children a parent has.

In Figure 3, a tree depiction of 3 generations of a branching process is shown.
In generation 0, one individual (patient 0) is infected. That individual infects
2 individuals, who make up generation 1. The first individual in generation 1
infects 3 others, whereas the second individual infects none (maybe they quar-
antined). The process can continue on indefinitely into generation 3, 4, 5...,
although depending on the reproduction number it may end when one gener-
ation has no “children” (to borrow the terminology for population branching
processes).

gen. 0 gen. 1 gen. 2

Figure 3: First 3 generations of a branching process.

In Algorithm 1 pseudo code for a branching process is shown. Here we have
initialized the number of individuals in generation 0 as N0 = 1, the reproduction
number as R0 = 2, and the number of generations to simulate, G = 10. The
algorithm is a double for loop, where we loop over each generation g, and within
each generation we loop over each individual and sample its number of direct
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infections in the next generation (g + 1) as a Poisson random variable, y ∼
Pois(R0), which we add to the running total of infections in the next generation,
Ng+1. If at any point in the for loop over generations, the current generation
has no infections, we then terminate the algorithm.

Algorithm 1 Branching process pseudo code

1: N0 ← 1
2: R0 ← 2
3: G← 10
4: for g=0:G-1 do

5: if Ng = 0 then Break
6: end if

7: Ng+1 ← 0
8: for i=1:Ng do
9: y ∼ Pois(R0)

10: Ng+1 = Ng+1 + y
11: end for

12: end for

Note that the branching process in Algorithm 1 does not capture suscepti-
bility as the SIR model does, nor is the population finite where at some point
herd immunity could be reached. Instead, one of 2 possible scenarios will occur.
If the reproduction number R0 < 1, which is called “sub-critical”, the branching
process will die out at some generation. However, if the process is super-critical
(R0 > 1), then the process will explode on average and continue to grow expo-
nentially (if it makes it past the first few generations). We will see later how to
extend the branching process in Algorithm 1 to include more realistic contagion
characteristics, such as the time between infections and finite population effects.

2.3 Random networks

In the branching process in Algorithm 1, contacts between individuals are im-
plicitly incorporated into the reproduction number parameter, but not explicitly
part of the model. However, as Kucharski outlines in Chapter 2 of RoC, the
network underlying social contacts can play an important role in how a conta-
gion spreads. In this section we will introduce some terminology on networks
(or “graphs”) and introduce two random graph models.

In Figure 4, the same network is shown in three ways. On the left, the
network is shown as a picture of four nodes connected by edges. Node 1 is
connected to 2, 2 is connected to all the other nodes, and additionally node
3 is connected to 4. When dealing with networks on a computer, there are
two useful data structures to represent a network. In the middle of Figure 4,
an “adjacency matrix” A is shown for representing the same network. In that
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matrix aij = aji = 1 if i is connected to j, and is 0 otherwise. Here we have
assumed the network is “un-directed”, meaning I am friends with you if you
are friends with me. Instead, we could have represented a directed network,
where the matrix A doesn’t have to be symmetric (which may be more realistic
for a network like Twitter where you follow someone who doesn’t follow you).
Finally, the network can instead be represented as an edge list, as shown on the
right in Figure 4. The edge list can be a more efficient way to represent the
network when the number of nodes is large, but the number of edges is small
compared to the size of the adjacency matrix.

1

2

3 4

0   1   0   0
1 0 1 1
0   1   0   1
0   1   1   0

(1,2)
(2,3)
(2,4)
(3,4)

Network/Graph

Adjacency Matrix
Edge List

Figure 4: Three ways to represent the same undirected network.

One important quantity for the spread of contagion is the “degree” of the
node, which is the number of nodes connected to a given node. For example,
node 2 in Figure 4 has a degree of 3. A higher degree means more contacts,
which could mean that if that node is infected then it will tend to spread a
contagion to more nodes. One way to characterize a network is through its
empirical “degree distribution”:

p(k) =
1

N

N∑
i=1

1{di = k}, (21)

where N is the number of nodes in the network and di is the degree of node i.
So here p(k) is the fraction of nodes that have degree k.

An interesting property of networks is that even if 2 have the same number
of nodes, edges, and degree distributions, contagion processes can still behave
differently between them. Kucharski discusses one such characteristic that can
lead to different network behavior, namely “assortativity”. First, the correlation
between two random variables X and Y is given by,

ρX,Y =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
, (22)

and is a value that ranges from −1 to 1. When ρ is close to 1 then the random
variables are highly positively correlated (they go up and down together), when
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ρ is close to -1 they are negatively correlated and thus when one goes up the other
goes down, and they are uncorrelated if ρ = 0. Back to degree assortativity, if
we consider a randomly selected edge from a network, the degree assortativity
coefficient is the correlation of the degrees of the 2 nodes connected by that
randomly chosen edge (see [22] for details). When degree assortativity r is
close to 1, we say the network is assortative and high degree nodes tend to be
connected to other high degree nodes. For disassortative networks, r is closer
to -1 and high degree nodes tend to be connected to low degree nodes.

2.3.1 Erdős-Rényi graphs

In the branching process Algorithm 1, we used a Poisson random variable to
model the reproduction number. Recall that we could have used a Negative
Binomial model instead, which would have greater variance and capture super-
spreaders. So one question is how do different networks lead to different repro-
duction number distributions?

One type of random graph is called an Erdős-Rényi (ER) graph [11]. An
ER graph is defined by two parameters which are the number of nodes N and a
parameter p giving the probability that two nodes are connected. For each pos-
sible edge, the edge is sampled independently from a Bernoulli random variable
with probability p. Thus, the number of edges follows a Binomial distribution
with parameters N and p. Furthermore, the degree of a node follows a Binomial
distribution with parameters N − 1 and p. Thus, if N is large and p is small,
the degree distribution of an ER graph is approximately Poisson with parame-
ter λ = Np. Therefore ER graphs will not tend to produce super-spreading, at
least if transmission is assumed to be iid.

2.3.2 Barabási-Albert preferential attachment graph

The degree distribution of many real-world networks often follows what is called
a “power law” distribution, e.g. p(k) ∼ 1/kp. These networks, such as the
internet, are characterized by a small fraction of nodes having very high degree
and a large fraction of nodes having low degree. The nodes with high degree
can produce super-spreading in contagion processes that wouldn’t be observed
in an ER network.

One example of a random network with a power law degree is a Barabási-
Albert (BA) preferential attachment network. The algorithm for generating a
BA network is as follows [2]. Start with a network withm0 nodes. Then add new
nodes, one at a time, that are “preferentially attached” to existing nodes with
higher degree. In particular, attach each new node to m ≤ m0 existing nodes,
where the probability that the new node attaches to existing node i is given by
di/

∑
j dj (here di is the degree of node i and the sum in the denominator is

over all existing nodes).
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2.4 SIR model on a network

Let’s now consider a network, stochastic analog of the SIR model in Chapter
1. Again we will want to allow individuals to move from susceptible to infected
to recovered/removed. However, now the population is no longer well-mixed
(e.g. complete graph), but instead has a heterogeneous network structure. If a
node is susceptible, but not connected to any infected nodes, then it shouldn’t be
infected in the near future. However, if a node has many connections to infected
nodes, it’s probability of infection should go up. In particular, let’s assume that
the probability of infection of susceptible node j over a time interval δt, who has
nj infected neighbors, is given by pIj = 1− e−δtnjβ (we use this instead of δtnjβ
to make sure it’s a probability between 0 and 1). As the time step δt, number
of infected neighbors nj , or transmission rate β increases, then the probability
of infection increases. Finally, we assume that recovery is independent of links
and occurs independently at some rate γ, e.g. the probability of recovery of
infected node j is given by pRj = 1− e−δtγ .

We have provided pseudo code for the network SIR model in Algorithm 2.
While one could imagine several possible data structures to use, we have chosen
to use the adjacency matrix A along with time dependent vectors S⃗t, I⃗t, and
R⃗t. Here St

i = 1 means node i is susceptible at time t (St
i = 0 means it is either

infected, Iti = 1, or removed, Rt
i = 1).

2.5 Latent homophily network

We will end this section with one more dynamic network model that appears to
exhibit contagion, but actually is an example where homophily can be confused
with contagion. Homophily in a social network is characterized by individuals
with similar traits (for example demographics) being more likely to have edges
between them in the network. There’s an old saying that “birds of a feather
flock together”, which is essentially describing an example of homophily.

The network model, introduced by Shalizi and Thomas [29], goes as follows.
First start with N nodes where each node i has a trait given by a uniform
random variable, xi ∼ U([0, 1]) (for example maybe this represents age in units
of 100 years). Next an undirected network is created connecting the N nodes
where an edge is assigned between nodes i and j with probability,

pij = σ(−3|xi − xj |). (23)

Here σ(x) = ex/(1 + ex) is the logistic function, which is an increasing function
from 0 to 1. Thus when i and j have similar traits, the difference |xi − xj |
is smaller and pij is larger. Next, from this undirected network, a directed
friendship network is created where each node i chooses one node j among its
connections to be a friend with probability proportional to σ(−|xj − .5|). If
node j is chosen, then we let Aij = 1 in the adjacency matrix (however j may
not necessarily choose i, so Aji could be zero). In Figure 5 we plot a simulation
of the resulting network with latent homophily.
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Algorithm 2 Network SIR pseudo code
Input: N ×N adj. matrix A, parameters β, γ, δt, T , initial infected node j

1: S⃗0 ← 1⃗
2: I⃗0 ← 0⃗
3: R⃗0 ← 0⃗
4: S0

j = 0

5: I0j = 1
6: for t=1:(T/δt) do

7: S⃗t = S⃗t−1

8: I⃗t = I⃗t−1

9: R⃗t = R⃗t−1

10: for i=1:N do
11: if St−1

i = 1 then
12: ni =

∑
j aijI

t−1
j

13: if rand()< 1− e−δtniβ then
14: Iti = 1
15: St

i = 0
16: end if
17: end if
18: if It−1

i = 1 then
19: if rand()< 1− e−δtγ then
20: Rt

i = 1
21: Iti = 0
22: end if
23: end if
24: end for

25: end for

Figure 5: Latent homophily network of Shalizi and Thomas [29].
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Now with the network defined by the adjacency matrix A, dynamics are
added as follows (and actually the dynamics won’t depend on A at all). We
let yi(t) be an observable outcome at node i and time t, for example maybe a
measure of smoking of individual i on day t. The dynamics proceed in 3 rounds:

• At time t = 0, yi(0) = (xi − .5)3 + ϵi0

• At time t = 1, yi(1) = yi(0) + .4xi + ϵi1

• At time t = 2, yi(2) = yi(1) + .4xi + ϵi2

where ϵit are independent normal (Gaussian) random variables with mean 0 and
standard deviation .02. The model is constructed such that the trend in y is
larger when x is larger. In Figure 6, a “causal diagram” for the model is shown,
where arrows indicate dependency between the random variables. We will see in
Section 3 that when we attempt to estimate the causal dependencies from data,
we often will detect arrows from yj(t−1) to yi(t), in other words contagion from
j to i, even though such a direct dependency isn’t present in the actual model.

Figure 6: Causal diagram for Shalizi and Thomas homophily network model (repro-
duced from [29])

.

2.6 Chapter 2 Exercises

1a. Simulate 500 samples from a Binomial random variable with parameters
N = 100 and p = .1. Create a histogram of the 500 samples.

1b. Next 500 samples from a Poisson random variable with parameter λ = 10.
What is the sample mean and variance? Create a histogram of the 500 samples
and compare to the histogram in 1a.

2a. Implement code for the branching process in Algorithm 1 with N0 = 1 and
R0 = .95. Simulate the process 1000 times and make a plot of Ng vs g for the
1000 simulations. What is the average epidemic size (total infections) across
the 1000 simulations?

15



2b. Next estimate the average epidemic size for the model in 2a using the
geometric series

∑∞
i=0 R

i
0 = 1/(1 − R0). How does your estimate compare to

the average you found in 2a?

3. Implement the Barabási-Albert preferential attachment network generation
algorithm described in Section 2.3.2 from scratch (rather than using networkx).
Then simulate a network with N = 100 nodes with 1 initial node and m = 1.
Visualize the network (you can use draw spring in networkx) and also plot the
degree distribution (again you can use networkx functions for this).

4. In Chapter 2, Kucharski discusses assortative vs disassortative networks,
and how contagion on the former spreads quickly but leads to smaller overall
epidemics, whereas on the latter contagion spreads more slowly but creates
larger epidemics. In this problem we will explore contagion on networks vs.
assortativity using Algorithm 2.

a) First implement Algorithm 2 in Python.

b) Next use the networkx function “read adjlist” from the networkx package
to read in the files “ba graph.adjlist” and “ws graph.adjlist”. Make a plot of
the 2 networks using “networkx.draw spring” and compute the assortativity of
each using the networkx function “degree assortativity coefficient”.

c) Run Algorithm 2 on the 2 networks using parameters δt = .1, β = γ =
1, and final time T = 20 and one randomly chosen node infected to start.
You can extract the adjacency matrices from the networks using the functions
“adjacency matrix” and “todense”. Try running the Algorithm several times
with different random nodes chosen as infected initially. Make plots of the total
infected vs. time for the simulations and interpret the results. Do you find that
the disassortative network exhibits slower spreading, but a larger epidemic?

3 Estimating contagion models from data

Chapter 3 of RoC deals with social contagion and distinguishing contagion ef-
fects from those due to homophily and shared environmental exposures. In
order to tackle these concepts we will first need to review regression and how
to estimate models from data. We will also take the time to discuss how to
estimate parameters of some of the models we saw in Chapter 1 and 2 and how
we might quantify uncertainty in those models.

3.1 The likelihood function

Consider the Bernoulli random variable from Chapter 2 and the experiment
of Boston College playing ice hockey against Boston University 5 times in a
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row (let 1 indicate BC wins and 0 indicate they lose). Suppose we observe the
sequence 1,1,0,0,1 and we want to estimate the probability p that BC will win
if they play a sixth game (assuming games are iid). One way to estimate p (or
the parameters of any model) is by maximizing the likelihood function.

The likelihood function is the probability of observing the data given the
model parameters, P (Data|Parameters). In the above example, this would be
P (1, 1, 0, 0, 1|p), and note that this depends on which value we plug in for p.
If we plug in p = .001, then the probability of observing 3 wins is quite small
(hence p = .001 is not very “likely”). For the case of independent Bernoulli
trials, the likelihood simplifies into a product:

P (1, 1, 0, 0, 1|p) = p1p1(1− p)0(1− p)0p1 = p3(1− p)2. (24)

Then to estimate p, we use Maximum Likelihood Estimation (MLE), and recall
from calculus we can maximize a function by setting its derivative to zero. In
practice we maximize the log of the likelihood (called the log likelihood) because
its easier to take a derivative of a sum than a product:

pmle = argmax
p

[log(p3(1− p)2)] = argmax
p

[3 log(p) + 2 log(1− p)]. (25)

Differentiating, setting 3/p − 2/(1 − p) = 0, and solving for p we find that
pmle = 3/5 (which is a nice result, since 3/5 is what we would have guessed
without using any probability theory).

3.2 Linear regression

As a second example, consider linear regression where we model a response vari-
able y as a linear function of explanatory variables (sometimes called features)
x1, ..., xm, plus some Gaussian noise ϵ:

y = θ1x1 + θ2x2 + ...+ θmxm + ϵ. (26)

Here θi are coefficients of the features that are parameters that need to be
estimated from data. For example, maybe we want to model the reproduction
number of COVID-19 (y) in a zipcode as a function of population density (x1)
and fraction of the population vaccinated (x2). Sometimes it is convenient to

use vector notation, where we let θ⃗ be a vector of coefficients and x⃗ be a vector
of features, and thus y = θ⃗tx⃗+ ϵ.

Since we have assumed the noise is Gaussian, given data (x⃗j , yj)Nj=1 then the
likelihood is given by:

L =

N∏
j=1

1√
2πσ2

e−(yj−θ⃗tx⃗j)2/(2σ2). (27)

Taking the log of the likelihood we get:

logL = N log(
1√
2πσ2

)−
N∑
j=1

(yj − θ⃗tx⃗j)2/(2σ2). (28)
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Maximizing this function is equivalent to minimizing the square error (we can
ignore the first term in the log likelihood because it doesn’t depend on the
parameters θ),

g(θ⃗) =

N∑
j=1

(yj − θ⃗tx⃗j)2, (29)

which is why linear regression is sometimes called least-squares regression.

3.2.1 Linear regression applied to latent homophily network dynam-
ics

Recall the network in Chapter 2 with latent homophily, where each node i has
a trait xi and nodes are more likely to be connected if they share a similar
trait. In that model, the entries in the adjacency matrix satisfy Aij = 1 when i
declares j to be a friend. Then network dynamics were defined by an outcome
variable yi(t) which evolved over 3 time steps t = 0, 1, 2. The dynamics at a
node i only depended on the feature xi and past values of the outcome variable
at the node. However, Shalizi and Thomas showed that false contagion can be
detected in such a model.

In particular, they define a regression (similar to the one used in Chistakis
and Fowler [8]) as:

yi(2) = θ0 + θ1yi(1) + θ2
∑
j

Aijyj(1) + θ3
∑
j

Ajiyj(1) (30)

+θ4
∑
j

Aijyj(0) + θ5
∑
j

Ajiyj(0) + ϵi.

Here the first coefficient θ0 is the intercept of the regression and θ1 is a coefficient
of the autocorrelation of the time series at node i. Then the next term captures
the contagion effect of node j, who i declared to be their friend. If the coefficient
θ2 is positive and statistically significant, then a higher value of the outcome
at j at time t − 1 leads to a higher outcome at i at time t. They also include
a potential effect from the “influenced to the influencer”, the idea being that
the coefficient (θ3) should be smaller given the directionality of the friendship
network (people who you consider a friend may influence you more than you
influence them, especially if they do not consider you a friend). The next two
terms are the contagion effects lagged one additional time step.

We have implemented the latent homophily network and the regression
model in this Google colab notebook 1. Notice that for the random seed cho-
sen (simply the first possible), the coefficient θ2 is estimated to be positive and
statistically significant. Shalizi and Thomas ran thousands of such simulations
and found that θ2 is positive in a majority of runs [29]. It should be remarked
that this toy model is not the same as the model estimated in [8]. However, the
point is that one needs to be careful when attempting to disentangle contagion
from homophily (or shared environmental influences).

1https://colab.research.google.com/drive/1pXTMstAFg0KY74kIuEvlYUSFuTlZlw1r?

usp=sharing

18

https://colab.research.google.com/drive/1pXTMstAFg0KY74kIuEvlYUSFuTlZlw1r?usp=sharing
https://colab.research.google.com/drive/1pXTMstAFg0KY74kIuEvlYUSFuTlZlw1r?usp=sharing


3.3 Optimization techniques for maximum likelihood es-
timation

In Equation 29 our goal is to minimize the square error g(θ⃗) and in general
maximum likelihood estimation involves solving such an optimization problem.
Recall from calculus that a function has a maximum or minimum when the
gradient (vector of partial derivatives) is zero:

∇θg(θ⃗) = 0⃗. (31)

In the case of Equation 29, this results in a linear system that can be solved
analytically. However, in many cases an analytical solution cannot be found.
One popular approach to MLE is gradient descent, where we start with an initial
guess for the model paramters θ⃗0 and then iterate:

θ⃗k+1 = θ⃗k − γ∇θg(θ⃗
k). (32)

Here γ is called the learning rate (which is similar to the timestep in forward
Euler) and when this iteration converges notice that the gradient will be zero.
The sign in front of the learning rate will depend on whether you are maximizing
(+) or minimizing (-) g.

For some likelihoods there may be more than one local max, and in that case
one might consider using a number of random initial guesses for the parameters
and then picking the parameters that lead to the largest value of the likelihood.
Also, sometimes the iteration can be sped up using second order derivatives, for
example using Newton’s Method. For more details on numerical optimization
see [32]. For linear regression and other common likelihoods, the python pack-
ages “scikit-learn” and “statsmodels” have optimization functions implemented
and many good examples on how to use them. In cases where you encounter a
new model and likelihood, then you can use auto-differentiation software such as
pytorch or tensorflow to solve the associated optimization problem in Equation
32.

3.4 Bayesian methods for parameter estimation

Suppose we were building a COVID-19 forecast for Boston during the initial
surge in March 2020, when we wished to estimate the number of cases, hospital-
izations, ventilators, etc that were needed. In that scenario, its important not
to just estimate a single number of hospital beds, but instead to have best and
worst case scenario estimates where we quantify the uncertainty in our model
and our forecast. Bayesian estimation provides a set of methods for simulta-
neously optimizing the likelihood to find good parameters, while also providing
estimates of the uncertainty of the model and its parameters.

Bayesian estimation comes from Bayes’ Theorem, which states:

P (θ|X) =
P (X|θ)P (θ)

P (X)
. (33)
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If we think of θ as our model parameters and X as the data, then notice that
the first term in the numerator on the right handside is the likelihood. The
term on the left handside is called the “posterior” and is the probability density
of parameters θ given observing the data X. When you think about it, this is
exactly what we want: we can use the mean of the posterior if we want a single
“best” set of parameters, or we can compute the variance and 95% quantiles of
the posterior to quantify uncertainty.

There are then two other terms on the right: P (θ) called the prior distri-
bution for the parameters and a normalizing constant P (X) that makes sure
the posterior is a true probability density that integrates to 1. Here one must
specify the prior P (θ), which is usually done by ether using domain knowledge
(maybe we know the average recovery time is 10±3 days) or by using a density
that is “uninformative”, e.g. a prior that is very flat, allowing for a large range
of possible parameters.

Unfortunately the constant P (X) cannot be easily computed in practice.
This is because P (X) =

∫
P (X|θ)P (θ)dθ, and when the number of parameters

is larger than a few this becomes a high dimensional integral that has exponential
computational complexity to approximate. So what is done instead in practice
is to use Monte Carlo methods to avoid this integral. One famous method for
sampling from the posterior is called the Metropolis-Hastings algorithm shown
in Algorithm 3.

Algorithm 3 Metropolis Hastings

1: Initialize θ0

2: for K=0:N do
3: θ∗ = θk + ϵ
4: r = P (θ∗|X)

P (θk|X)

5: θk+1 = θk

6: if r>rand() then
θk+1 = θ∗

7: end if
8: end for

In the MH algorithm, we construct a sequence of parameters θk by adding
noise (for example Gaussian noise ϵ) to generate a proposal set of new parame-
ters θ∗. We then keep that new proposal as θk+1 with probability equal to the
ratio of the posteriors of the proposal and the previous parameters at iteration
k, e.g. the ratio r = P (θ∗|X)/P (θk|X). The neat thing about this ratio is
that P (X) on the top and bottom cancel out! So we avoid needing to compute
the integral. Because the ratio r will tend to be larger if the likelihood of the
new parameters is larger, the sequence θk will randomly make its way to larger
values of the likelihood. This sequence of parameters is called a Markov Chain,
and once it converges one can show that the sequence of parameters θk samples
from the posterior P (θ|X).

Let’s see how this works with an example. Again we will use the BC vs BU
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hockey data x = [1, 1, 0, 0, 1] where we want to estimate the probability p of BC
winning the next game. We can use the package “pystan” which is a wrapper
for the Bayesian programming language STAN [4]. In STAN we need to specify
the data x, along with how many samples there are (N = 5). We also need to
speficy the parameters that we want to estimate, in this case a single parameter
p that is between 0 and 1 (because it’s a probability). Finally, we specify the
model. For the prior I used a beta distribution, which is typically used for
probabilities because it’s output is between 0 and 1. The code2 is contained in
Figure 7 and the output of the code is in Figure 8. In Figure 8, we see a plot of
pk vs MH iterations k, which is sampling from the posterior. We can compute
the mean and 95% range of these values, which we see are 0.57 and [0.23, 0.87]
respectively. Note the mean is similar to the 0.6 value from MLE, however we
also have an estimate of uncertainty. Because there were only 5 games, the
Bayesian 95% “credible interval” is between 0.23 and 0.87. Thus based on the
data we really can’t say which team is better (we would need to collect more
data).

It is worth noting that for higher dimensional problems with more parame-
ters, Algorithm 3 can be quite slow. In this situation it is better to use infor-
mation on derivatives of the likelihood to speed up convergence of the Markov
Chain. Luckily STAN can do this for us. In practice one should use more sam-
ples than in the above example, perhaps 10,000, and also throw out samples
early on before the Markov Chain converges (this period is called the burn-in).
Note you can also repeatedly run STAN for several chains (“num chains” in the
code), to remove the dependence on the initial parameter guess (the parameters
can potentially get stuck in a local maximum of the likelihood, as can happen
with MLE). For further reference on Bayesian methods, see [14] which has a
free online pdf version. For our class we will make use of STAN as a black box
that can provide us parameter estimates and their uncertainty.

3.5 Using STAN to fit a SIR model

In the next example we use STAN to fit a SIR model to simulated data. We
simulate the model in Equations 10-12 with parameters γ = 1/8, β = .4, N =
100000, I0 = 1 and ∆t = 1 day. We simulate the model for 30 days and then
use the posterior parameters from STAN to forecast out an additional 30 days.
We assume that the observed data for new daily infections is a Poisson random
variable given by:

newInf ∼ poisson(βSI/N), (34)

which could alternatively can be specified as Gaussian or negative binomial. For
the priors on the recovery rate, transmission rate, and initial infected we use

2https://colab.research.google.com/drive/1ajm5DoPWAvsaKo0i1xyIgtaTG9wsxJcq?

usp=sharing
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Figure 7: Pystan code for Bernoulli hockey example.

Figure 8: Output of pystan code for Bernoulli hockey example.
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the following specifications recommended in [9]:

γ ∼ lognormal(log(1./8.), .2) (35)

β ∼ lognormal(log(.4), .5) (36)

I0 ∼ cauchy(0, 100). (37)

The first two are informative priors based on domain knowledge of COVID-19
(recovery rate with a mean of 8 days, transmission rate with a mean of 0.4).
The lognormal distribution is used to keep the parameters non-negative, since
recovery and transmission rates must be positive. The cauchy distribution is an
uninformative prior with large variance, indicating we do not have a good guess
for the initial number of infected at day 0.

We plot the forecast in Figure 9, where we not only estimate the expected
number of daily new infections, but we also provide a 99% credible interval for
the number of new infections. A Google colab notebook with the code for the
simulation and model fitting can be found here3.

Figure 9: STAN forecast using data from a simulated SIR model.

3.6 Chapter 3 Exercises

1. Simulate 15 samples from a Poisson random variable with parameter R0 =
2.5. Next implement STAN code to estimate the Poisson parameter R0 from
the simulated data. Use an uninformative prior for R0 that is cauchy(0,100).
Use 10000 MCMC iterations and find the posterior mean and 95% Bayesian
credible interval for the estimated R0. How do these agree with the true value
of R0 = 2.5?

2a. Modify the STAN code from Section 3.5 to fit a SEIR model instead of SIR.
Note you will need to add a new exposed compartment variable, E, along with
a new parameter µ, the incubation rate.

3https://colab.research.google.com/drive/1tfx73t2Q_B_DxBXGxJwcEJ-Aauevk8Pc?

usp=sharing

23

https://colab.research.google.com/drive/1tfx73t2Q_B_DxBXGxJwcEJ-Aauevk8Pc?usp=sharing
https://colab.research.google.com/drive/1tfx73t2Q_B_DxBXGxJwcEJ-Aauevk8Pc?usp=sharing


2b. Next choose a prior for the incubation rate µ. To do this, do some research
online for what a reasonable range for the COVID-19 incubation period is (note
µ is the inverse of the average incubation period).

2c. Next use the STAN code to fit the SEIR model to Boston COVID-19 data
from the spring of 2020 provided in “boston covid.csv”. Fit the model to the
first 14 days of the data and then use the model to forecast out an additional
28 days. Plot the mean and 95% credible interval of the forecast and overlay
on the plot the actual cases that occurred. How well did the forecast match the
actual data? Interpret your results.

4 Spatial statistics and point process models of
gun violence

Chapter 4 of RoC discusses gun violence and how it can be viewed as a contagion
process. In this Section we will learn about branching point process models of
gun violence that are well-suited for the scenario when the reproduction number
is below 1. Here we will consider spatial aspects of gun violence in addition to
contagious clustering in time. At the end of the Section we will also look at the
Lum and Isaac analysis [20] discussed by Kucharski which investigates potential
bias feedback loops that are possible when police use point process models for
patrol allocation.

4.1 Mapping and analyzing point patterns

Figure 10: Cholera incidence map made by John Snow in 1854.

In Chapter 4 of RoC we saw the map John Snow made of cholera cases
in London, which helped him determine that a source of water was the cause
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of the outbreak (Figure 10). Similar maps are used in analyzing urban event
data today to identify clusters of crimes, overdoses, traffic crashes, and other
types of social harm. When we map a set of locations (that could consist
of a latitude and longitude), we call the resulting pattern a “point pattern.”
Examples of point patterns in the unit square are shown in Figure 11. On
the left, is a completely random set of points where the x and y coordinates are
independent uniform random variables. It’s worth noting that clusters still form
by random chance, so when we say something “clusters” what we will mean is
that it clusters more than you would expect from random chance. In the middle
we have plotted a ‘regular” or “self-avoiding” point pattern where points are
randomly distributed, but no two points are with a fixed radius of each other.
For example, the location of apple trees in a commercial orchard might follow
a regular point pattern.

Figure 11: Random (left), regular (middle) and clustered (right) point patterns.

On the right is a clustered point pattern that exhibits more clustering than
would occur by random chance. Gun violence, crime, and other urban events
tend to be clustered. In part, this is due to geographical constraints (burglary
occurs in houses, and not in parks and lakes), but it is also due to human
behavior and factors such as contagion.

4.1.1 Ripley’s K function

How can we tell whether a point pattern is regular, random or clustered? In
some cases it may be visually clear, but we can also use quantitative measures
of clustering. One spatial statistic we can use for this purpose is called Ripley’s
K function [25]. Consider a randomly distributed set of points x⃗i, i = 1, ..., N ,
in a spatial region with area A. Next pick a random point x⃗j , and a radius
r around that point. How many points would we expect to be within that
radius? If the points are randomly distributed, then we would expect there to
be N ·πr2/A points in that radius (ignoring boundary effects). The K function
is then defined to be

K(r) = λ−1E[number of extra points w/in radius r of a random point],

where λ = N/A. So for a uniformly random point pattern, K(r) = πr2.
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For a given dataset of points, we can estimate the K function with a sample
average:

K̂(r) =
A

N(N − 1)

∑
i ̸=j

1{∥x⃗i − x⃗j∥ < r}. (38)

Then we can compare that empirical curve against the curve πr2. If it is higher,
then that means clustering at that radius, if it is lower, then that means self-
avoidance. Of course even if we simulate data completely at random and com-
pute K̂(r), by random chance the empirical K function will be slightly higher or
lower than the theoretical curve. Therefore we typically simulate a large number
(several thousand) of uniformly random point patterns on the same domain as
our data, with the same number of points, and then compute a confidence inter-
val [K̂low(r), K̂high(r)] from that data. If the empirical K function of the data
falls outside this interval, then we may reject the null hypothesis that are data
is completely random and claim there is evidence of clustering or avoidance. A
Google colab notebook with code for generating the point patterns in Figure 11
and the K function of the point patterns can be found here4.

4.1.2 Hotspot maps

While the K function, and similarly defined spatial statistics, can help us deter-
mine whether our data exhibits clustering, it doesn’t give us an intuitive sense of
how much clustering is present. Furthermore, we would like to identify clusters
so that we can intervene and stop an outbreak from spreading.

John Snow’s map in Figure 10 gives us a great starting point for what is
called a “hotspot map” by criminologists [5]. Starting with a point pattern
(locations of cholera incidence), Snow then aggregated those events by dividing
street segments into bins and counting the number of events in each bin. The
result was a 2-dimensional barchart on the London street network showing that
street segments near a particular water pump had an unusually high incidence
of cholera.

How can we create such a visualization on a computer? First we need to
define spatial units over which we will aggregate data. Street segments are a
popular choice today, just as they were for John Snow. Alternatively, polygons
such as those defined by census blocks are also used when one would like to
associate demographic variables with hotspots of incidents. Suppose we have
divided a city (or street network) into M spatial sub-regions Um, m = 1, ...,M ,
and we have incident data x⃗i, i = 1, ..., N . To create a hotspot map, we then
just need to count the number of incidents, ym, in each sub-region, Um:

ym =

N∑
i=1

1{x⃗i ∈ Um}. (39)

If c⃗m is the centroid coordinates of region Um, then we have all we need to
visualize the data. For example, we can:

4https://colab.research.google.com/drive/1g16zWxZbtf_ad9PEYWgrO35z9PRDr4H6?

usp=sharing
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• place a marker at c⃗m with size proportional to ym,

• color code the entire region Um with colors indicating how large ym is,

• or select the top k largest values of ym and plot only those corresponding
sub-regions.

We plot an example of the third type of hotspot in the left of Figure 12, where
we have used squares as the sub-region and we have selected the top k hotspots
to plot. The color of the hotspot indicates what type of incident is at risk:
vehicle crash (red), burglary (green), larceny (blue) and assault (purple).

OVERDOSE_EMS ROBBERY

ASSAULT AUTO BURGLARY

Any_Illicit_Opioid Any_Opioid_Death Any_Prescription_Opioid

Figure 12: Example hotspot maps. Histogram based hotspots (left) and kernel density
based hotspot map (right).

One draw back of these counting based hotspot maps is that we are treating
each spatial sub-region Um as independent of all others. In reality, the counts
ym are often correlated and a hotspot may be comprised of multiple sub-regions.
Kernel density estimation (KDE) [30] is one way to account for these correlations
between sub-regions and to connect hotspots across the regions:

ym =

N∑
i=1

g(c⃗m − x⃗i;σ). (40)

In Equation 40, we center a kernel function g at each point x⃗i that decays the
farther away you get from x⃗i. A typical choice is a Gaussian density function,
where σ is the “bandwidth” that controls how quickly the function decays. Then
these functions are summed and evaluated at each sub-region center c⃗m. The
effect is you get a smoother function representing the level of incidence over
space that can be visualized as a “heat map”. In example of such a map is
shown on the right in Figure 12.

Both the counting based histogram in Equation 39 and KDE in Equation
40 can be viewed as estimators of an underlying probability density of events.
There are techniques for selecting how large the spatial units Um should be, or
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for how large to select the bandwidth σ in KDE. There is a balance to achieve,
as too large a bandwidth creates a very blurry plot that is not useful and too
small a bandwidth will yield hotspots that are due to noise rather than real
effects. See [30] for a discussion of bandwidth selection.

4.1.3 The lorenz curve and the gini coefficient

Criminologist David Weisburd posits that there is a “law of crime concentration”
[31] which states that over 50% of crime occurs in only a few percent of a city,
and that this observation is consistent across many cities around the world. For
such an analysis, Weisburd uses street segments as the sub-regions Um, then
calculates the histogram estimator ym in Equation 39, and sorts the counts ym
to calculate what fraction of sub-regions are needed to contain 25% or 50% of
crime. If we denote the sorted counts (ordered greatest to least) as y(m), then

Figure 13: Lorenze curve and the gini coefficient. Gini coefficient G is twice the area
between L(p) and the line of inequality, e.g. G = 2A.

Weisburd’s statistic is a point on the lorenz curve:

L(p) =

∑k
m=1 y(m)∑M
m=1 y(m)

, (41)

where p = k/M is the fraction of regions or street segments flagged as hotspots.
For example, L(.03) = .5 can be interpreted as 3% of the city containing 50%
of events. We can think of the lorenz curve as a measure of inequality, for if all
regions had an equal rate of events then is should be the case that L(.03) = .03.
It should be noted that in economics the counts are by convention sorted least
to greatest, and that the lorenz curve is then below the line of equality.
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A related measure of inequality is the Gini coefficient, which is twice the
area between the lorenz curve and the line of equality (see Figure 13). The Gini
coefficient can be estimated by approximating the integral of the lorenz curve:

G =
1

M

(
2

(∑M
m=1(M + 1−m)y(m)∑M

m=1 y(m)

)
−M − 1

)
. (42)

The Gini coefficient can be thought of as an average value of the lorenz curve,
and its value ranges from 0 (total equality) to 1 (total inequality). Larger values
of G indicate that incidents are more clustered and that a large fraction of events
are contained in only a few hotspots.

4.2 Point process models

In addition to clustering in space, gun violence may also cluster in time. In
Figure 14, we plot the times of attacks between Locke St. and Lowell St. gangs
in Los Angeles. The events cluster more than would be expected by random
chance, with periods of no events in between clusters. In this section we will
model such clustering with a branching process called a “Hawkes point process”
and then use that model to estimate contagion parameters such as the repro-
duction number and serial interval between events. First we will introduce point
processes.

2000−01 2000−07 2001−01 2001−07 2002−01

Figure 14: Times of attacks between Locke St. and Lowell St. gangs in Los Angeles
from 1999-2002.

4.2.1 Poisson process

Consider a time interval [0, T ] and suppose events occur randomly at a constant
rate, or “intensity”, λ(t) = µ. Such a process is called a Poisson process, which
is an example of a more general class of models called point processes. Why is
the model called a “Poisson” process? There are several ways to simulate data
from the model, but one way involves:
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1. Draw a Poisson random variable N ∼ Pois(µT ) specifying the number of
events.

2. Distribute N event times ti randomly and independently according to
ti ∼ Unif([0, T ]).

As we can see in the above algorithm, the number of events is Poisson, and then
the times of events are random in the time interval. Alternatively, a Poisson
process can be simulated sequentially with iid exponential random variables as
the inter-event times, e.g. t1 ∼ exp(µ−1), t2 ∼ t1 + exp(µ−1),...,ti ∼ ti−1 +
exp(µ−1), which then ceases when ti > T (so an interesting fact is that, for a
uniform distribution of points, the inter-point distances are exponential).

4.2.2 Hawkes process

In order to model events such as those in Figure 14, we need to allow the
intensity of events λ(t) to change in time. In the case of gang retaliations, we
would expect the rate of events to increase after an initial event. One type of
point process that models this type of behavior is called a “Hawkes process”,
where the intensity is modeled as:

λ(t) = µ+
∑
t>ti

R0γe
γ(t−ti). (43)

The Hawkes process in Equation 43 has three parameters. The first pa-
rameter µ is called the “baseline” or “background” rate, and it models events
that occur spontaneously as a Poisson process with rate µ. In the case of gun
violence, these events might be an initial random event that then sparks an
outbreak of retaliations. The parameter R0 is the reproduction number of the
contagion process and the parameter γ is the recovery rate. An example of
such an intensity is shown in Figure 15, where we see after each event time the
intensity increases by an amount R0γ, and then in the absence of events the
intensity decays exponentially back to the baseline rate µ. The Hawkes process
can be simulated as a branching process [16]:

1. Draw a Poisson random variable N ∼ Pois(µT ) specifying the number of
spontaneous background events.

2. Distribute N background event times t0i randomly and independently ac-
cording to t0i ∼ Unif([0, T ]). These comprise generation g = 0.

3. Given events tgi from generation g, simulate events in generation g+1 as:

• For each event tgi , draw a Poisson random variable Ng
i ∼ Pois(R0)

specifying the number of direct ancestor events of tgi .

• Add Ng
i events to generation g + 1 with event times distributed as

t ∼ tgi + exp(γ).
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Figure 15: Simulation of a Hawkes process.

4. Stop the simulation when all events in a generation are past the event
window (> T ) or when a generation has no events.

The Hawkes process is connected to the SIR model in Chapter 1 and can be
viewed as a stochastic version that models event times a continuous process,
rather than counts of events over discrete time intervals [26] (and the Hawkes
intensity can be modified to account for finite population effects). An incuba-
tion period can also be added to the Hawkes process model by replacing the
exponential kernel in Equation 43 with an alternative function with a peak to
the right of zero, such as a gamma, weibull, or log-normal density [7].

4.2.3 Estimating a Hawkes process in STAN

Recall from Chapter 3 that we can use the log likelihood function to estimate
model parameters. In the case of the Hawkes process, the log-likelihood is given
by [23]:

logL =

N∑
i=1

log(λ(ti))−
∫ T

0

λ(t)dt. (44)

We can also approximate the integral in the likelihood formula as [28]:∫ T

0

λ(t)dt ≈ µT +R0N. (45)

Because the Hawkes process is not included in the STAN library, we need to
specify this custom likelihood in our STAN code. In STAN, the log likelihood is
called the “target” and we can add this log-likelihood function to the target in
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the model section of the STAN code (see Figure 16). A Google colab notebook
for simulating and estimating a Hawkes process in STAN can be found here5.

Figure 16: STAN code with custom likelihood for estimating the Hawkes process in
Equation 43.

4.3 Hotspot policing: deterrence, discovery and biased
feedback loops

Earlier in this section we saw how hotspot maps can be constructed and used
to identify areas of a city with higher than usual rates of harmful events, such
as cases of a disease, traffic crashes, crime or shootings. These maps can then

5https://colab.research.google.com/drive/1OdZ3AAOORUQwdXGmO8S_NghYrIoUc5wG?

usp=sharing
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be used for the allocation of resources to perform an intervention with the goal
of reducing the risk of harm in the identified hotspots.

One type of intervention is known as “hotspot policing,” where police officers
are sent to hotspots to conduct a range of activities that can include vehicle pa-
trols, foot patrols, and community engagement. They can also range from very
passive activities, such as parking unmanned vehicles with police markings to
deter activity, to activities such as stop, question and frisk of individuals pass-
ing through hotspots. For example, in the Philadelphia foot patrol experiment
in 2006 [24], 200 officers conducted foot patrols in 60 violent crime hotspots
for 16 hours a day. The experiment showed a 23% reduction in violent crime
(compared to 60 randomized control hotspots). In an experiment in Los Ange-
les [21], our research showed that one property crime (burglary/vehicle theft)
is prevented for every 1000 minutes of police patrol time in hotspots (defined
using a Hawkes process similar to that in Equation 43). However, it should
be noted that a consequence of hotspot policing is increased encounters be-
tween police and citizens. For example, the Philadelphia experiment led to 15%
greater drug related incidents and 64% more pedestrian stops. These types of
stops and interactions tend to disproportionally impact minority populations
[6]. Thus hotspot policing has the potential to deter harmful events in hotspots,
but it also has the potential to lead to detection of things like drug use, broken
tail lights, or other minor offenses that allow for police discretion and tends to
unfairly target people of color.

As discussed in RoC, Lum and Isaac [20] showed how hotspot policing (or
spatial predictive policing) has the potential to lead to feedback loops of police
bias. Using drug use data from Oakland California, they showed how a Hawkes
process that takes drug crime data as input would direct police to areas with
higher rates of detection of drug use in the past. That in turn would lead
to more drug arrests in those areas, which would then be fed back into the
Hawkes process algorithm, directing more police to those areas tomorrow (hence
a feedback loop).

Here we will consider a simplified version of this model. Suppose there are 2
neighborhoods, A and B, and that the Poisson rates of reported crime in those
neighborhoods are given by λA = λB (thus they have equal rates of reported
crime). Next suppose that each day, the police department creates a 10-day
hotspot map which is the total number of crime in a neighborhood in the past
10 days. Then, assuming limited resources, they send a patrol today to the
neighborhood with the largest value of the hotspot map. Finally, we assume
that the police presence influences the rate of crime through detection, such
that for today the rate of crime in the neighborhood with patrol is given by ρλA

(or ρλB if B is chosen). Here the factor ρ could reflect deterrence (ρ < 1) or
detection (ρ > 1). Lum and Isaac used a value of ρ = 1.2.

In Figure 17, we plot the cumulative number of crimes in each neighborhood
from a simulation of this model for 200 days, where at day 100 police are in-
troduced into the model. On the left, we use ρ = 0.1, which reflects deterrence.
In that simulation the slope of the curves decreases, but both neighborhoods
have similar rates of events. This is because the deterrence reduces the hotspot
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map value, leading to police alternating between visits to neighorhood A and
B. On the right, we show results from a simulation with ρ = 2.0. Here we
see that after police are introduced at time 100, neighborhood B becomes the
main focus of police in perpetuity (even though the rates of reported crime are
equal between the two neighborhoods). Depending on the random seed of the
simulation, neighborhood A could have become the focus of police. A Google
colab notebook with the simulation can be found here6.

Figure 17: Cumulative crime in neighborhood A (blue) and B (orange) vs time in two
simulations of hotspot policing. The simulation on the left is of deterrence (ρ = .1)
and on the simulation on the right is of detection (ρ = 2.0).

Of course, this is an overly-simplified model. In reality, deterrence and de-
tection are both happening during hotspot policing interventions. Deterrence
tends to reduce the risk of more serious crime, but at the expense of more pedes-
trian and traffic stops that disproportionately and negatively impact minority
individuals [6]. Research is needed on how to design interventions, whether by
police or alternative organizations, that have the benefits of harm reduction
while reducing negative side effects, such as those that stem from proactive
policing.

4.4 Models that interact with their environment

Much of Chapter 4 in RoC discusses how models can influence policy, thus
altering the system they are attempting to model. In the case of COVID-19,
early SEIR forecasts showed dire consequences if public health interventions
were not quickly employed. Of course, those interventions were implemented,
and cases quickly fell, causing the forecast to be “wrong”. In the case of hotspot
policing above, the model may be used to direct police to certain areas of a city,
thus altering what crime data is ultimately fed back into the model.

Reinforcement learning (RL) is a branch of artificial intelligence and machine
learning research that attempts to take into account how models interact with
their environment, and how models should change based on the feedback they

6https://colab.research.google.com/drive/1sbI7H4DQL1-1u-
Ys3goFWC2jmP4IuuyK?usp=sharing
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get from their environment. While RL could be the subject of an entire semester
long course, we will give one simple example here related to the hotspot maps
and detection of incidents.

Suppose there are N dormitories at a college each with 1000 students. We
believe there is asymptomatic spreading of a virus on campus, and we have a
limited supply of tests that can be used to detect cases. In particular, we have
enough tests for 10 individuals in a single dormitory per day. How might we
choose which dorm to test each day to most quickly learn which has the highest
prevalence of the disease? The problem above is known as a multi-armed bandit
problem. The name comes from slot machines at casinos, which have an “arm”
that you pull to play the game (and are called bandits because they take your
money). Different machines are set to somewhat different average payouts, so
the goal is to quickly find the best machine to play.

We conclude this section with the ϵ-greedy multi-armed bandit algorithm
shown in Algorithm 4. In each round we choose an arm k to pull. With prob-
ability ϵ we choose an arm randomly, which allows us to explore arms we have
yet to visit (and which could have a higher payoff). Or, with probability 1− ϵ,
we choose to play the arm with the largest average payoff based on our his-
torical observations. The parameter ϵ can be tuned to balance exploration vs.
exploitation of existing knowledge. These types of algorithms can be useful
when dealing with partially observed events, and when we have to take a par-
ticular action to observe data. We leave it as an exercise to apply the ϵ-greedy
algorithm to the random dormitory testing scenario above.

Algorithm 4 MAB ϵ-greedy

1: Initialize mean reward mk = 0 at each arm k
2: for t=1:T do
3: if ϵ >rand() then
4: pick arm k randomly
5: else
6: pick arm k =argmaxjmj

7: end if
8: observe reward rtk of arm k at time t
9: update mk as the average of all rewards observed at arm k

10: end for

4.5 Chapter 4 Exercises

1a. Import the data “chicago gun violence reports.csv” from canvas into python,
which contains reports of batteries in Chicago involving a gun from 2016 to 2021.
Calculate the total number of events ym in each police “Beat” m in the data.
Which beat has the most events and how many does it contain?

1b. Next order the event counts ym in descending order and calculate the lorenz
curve and gini index. Make a plot of the lorenz curve. What percent of events
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are captured in the top 10% of beats?

1c. Create a hotspot map of the top 10% of beats with the most reported
batteries involving a gun. Place a circle marker at the center of each beat (as
defined by the average or median of the incident locations in the beat) and
make the size of the marker proportional to the number of incidents. You can
use plotly and mapbox to place these markers on the map.

2a. Download the data “LockeLowell.csv” containing the event times of attacks
between Locke St. and Lowell St. gangs in Hollenbeck Los Angeles from 1999-
2002. Use the STAN code provided in Section 4.2.3 to estimate the reproduction
number and recovery rate parameters of a Hawkes process fit to the data. How
do these values compare to the parameters R0 = 0.63 and γ = (125days)−1

from Chicago discussed in RoC?

2b. Using the posterior mean parameters for µ, R0 and γ found in 2a, simulate
data from a Hawkes process for 3 years using these parameters and make a plot
similar to Figure 14. Qualitatively, how does the clustering pattern of these
simulated events compare to the Locke-Lowell data?

3. Suppose there are N = 10 dormitories at a college each with 1000 students.
We believe there is asymptomatic spreading of a virus on campus, and we have
a limited supply of tests that can be used to detect cases. In particular, we
have enough tests for 10 individuals in a single dormitory per day. Finally,
suppose that the true prevalence rates of the dorms k = 1, ..., 10 are p = k/100
(note that observations at a dorm thus are a binomial with parameters 1000
and p). Implement the ϵ-greedy algorithm to optimize the average number of
detected cases over 100 days of testing. See how the results change for different
ϵ = 0, .05, .1, .2. For each of these ϵ, make a plot of number of cases detected vs
time for 10 simulations.

5 Online viral processes

In Chapter 5, Kucharski explores a variety of examples of online contagion
processes. These include viral social media cascades, online opinion formation,
and contagion of emotion. In this type of research, we often need to analyze the
text of social media posts to understand what is being said, what opinion the
poster may hold and what their sentiment towards an issue is. In this section
we first introduce some basic tools for analyzing text data. We then explore a
dynamic network model for the formation of echo chambers.

5.1 Text analytics

Consider the data in Figure 18. It contains (fake) data on post users made
online about whether they prefer ice cream or frozen yogurt. We will explore
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some basic concepts in text analytics using this data as an example.

Figure 18: Pandas dataframe containing text information.

First, if our dataset is large, we may wish to get a sense of what individuals
are talking about in the data by looking at the frequency of keywords. To do this,
we can first split each sentence into a list of separate words. We can then create
a long dataframe (using panda’s explode function), where each word is given a
new row in the data. Finally, we can use pandas group by and aggregation to
count the word frequencies. An example is shown in Figure 19.

Note in Figure 19 that the word HATE is capitalized, and that if it appeared
again in lower case that it would be counted as two separate words. So it is
common practice to convert words to lower case before analyzing text data,
for example this can be done in python as ”HATE”.lower(). We might also
want to remove “stop words” such as “the”, “and”, etc. that do not contain
much information on what topics are contained in the text. The python package
“nltk” contains a list of stopwords you can use to remove them from a dataset
of text (once phrases are split into separate words).

5.1.1 Sentiment of text

In Chapter 5 of RoC, we read about the controversial Facebook emotion exper-
iment [18], where users in treatment groups were either shown more positive
posts (resulting in the users subsequently posting more positive comments), or
more negative posts (resulting in the users posting more negative content). The
controversy stemmed from the researchers failing to get informed consent from
users ahead of time.

But how does one even figure out if a post is negative or positive? It would
be impractical for humans to label millions of posts from users, so an algorithm
is typically used to make such an assessment. One way to do this is to use a
manually coded dictionary of words where humans have assigned a “polarity”
score to each word indicating whether it is negative, positive or neutral. For
example, in Figure 20 we apply sentiment analysis provided by the textblob
package to the sentence “I hate cold frozen yogurt.” In textblob’s sentiment
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Figure 19: Counting word frequency using pandas.

38



word library, “cold” is assigned a polarity value of -0.6 and “hate” is assigned
a value -0.8. All the other words are deemed neutral, with a polarity value of
0.0. Then the non-zero polarity values in the sentence are averaged, such that
the polarity of the sentence is assigned a score of -0.7.

Figure 20: Sentiment analysis using textblob.

5.1.2 Text classification

Another task we often need to perform with text data is classification, where
we might want to classify whether a post is on a particular topic (maybe we
would like to find the subset of Tweets related to COVID-19 vaccination), or
we might want to classify the opinion expressed in the post (whether the post is
pro- or anti-vaccination). For example, in the article by Flaxman et al [13] on
echo chambers discussed in RoC, the authors needed to classify news articles as
regular articles vs. opinion pieces.

One approach to this problem (and that taken by Flaxman et al), is to first
create a document-term matrix. This is a matrix where each row corresponds
to a “document,” which could be a Facebook post or a news article, and each
column corresponds to a word. Then the matrix is filled with zeros and ones,
where zero indicates the word was not present in that document and one in-
dicates that the word is present (or instead the entry can be the count of the
word if it appeared multiple times). An example is shown in Figure 21.

Then, given labels for each document (whether an article is news or opinion,
or whether a post is pro- or anti-ice cream), we can then train a classifier using
the doc-term matrix as features. For example, given two categories labeled as
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Figure 21: Document-term matrix.

y = 1 and y = −1, we could form a regression as:

y = a0 + a11{word1}+ a21{word2}+ ...+ an1{wordn}. (46)

Here the coefficient ai multiplies an indicator variable for whether wordi is
present or absent in the document. If ai is positive, that means that wordi
tends to be present when y = 1 is the label of the document. If ai is negative,
that means that wordi tends to be present when the document is of the other
type (y = −1).

There is a problem with this approach however, namely that there is over
a hundred thousand possible words. So depending on the number of rows in
our data, we may be very likely to overfit noise in the data. For this reason
we often reduce the number of possible words. One approach is to remove stop
words, or also use words if they appear frequently enough, but also not too
frequently. Suppose we are trying to decide if a person is pro- or anti-mask
useage based on posts. A word such as COVID-19 may appear quite frequently,
in fact it may be in almost every post. So it won’t be very useful in classifying
between the two categories. On the other hand, if a word such as a proper noun
only appears once, then it also won’t be useful. We can quantify this using
“term frequency-inverse document frequency” (tf-idf), which is the frequency
of a word in a document divided by the percentage of documents in which the
word appears. Thus we often use a tf-idf doc-term matrix, which is smaller than
the full doc-term matrix. An example of using tf-idf and linear regression to
classify news articles can be found here7.

The keyword-regression approach has two problems that can’t be solved by
reducing the number of words or using tf-idf. One problem is how to deal with
synonyms, because if we say “agriculture” or “farming”, these are basically the
same thing for classification purposes but they will be treated as two separate
words. Neural networks have an advantage in that they “embed” (or “repre-
sent”) words as a vector, in a way such that two words that are similar have

7https://scikit-learn.org/stable/auto_examples/text/plot_document_

classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py
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vectors that are nearby in euclidean space. Second, it is often not just a sin-
gle word, but context and dependencies between words that give text meaning.
If I say “I hate that I have to wait so long to get ice cream”, the regression
approach may classify this as me hating ice cream, but the context of me wait-
ing really means that I like ice cream. Large neural network based language
“transformer” models [10] are able to learn these types of dependencies when
trained on millions of documents and are currently achieving state of the art
performance on a number of language tasks (but they are outside the scope of
these lecture notes).

5.2 A dynamic network model of echo chamber formation

In Section 2, we saw the network SIR model where a contagion process dynami-
cally evolved on a network. In that model, the network was fixed ahead of time
and then the dynamics evolved on top of the network.

However, in an online system such as Facebook or Twitter, our behavior can
actually change the network. For example, which friends posts you “like” on
Facebook is fed into an algorithm that determines which friends posts you see
(or don’t see) in the future, thus changing the strength of friendship ties on the
network. In [3], a dynamic network model for how echo chambers might form
is presented and we will consider that model in this section.

Consider N nodes i = 1, ..., N and suppose each individual has a parameter
xi ∈ [−∞,∞] that characterizes that individuals opinion about a particular
issue. There are two opinions, where xi < 0 indicates one side, and xi > 0
the other opinion (where the more negative or positive xi is, the more strongly
the opinion is held). Additionally, each individual has a parameter ai that
determines how active individual i is online. Initially we draw random variables
for the opinion and activity variables: xi ∼ Unif([0, 1]), ai ∼ Pareto(γ).

Next, we simulate the dynamics for discrete time steps t = 1, ..., T , where at
each time step:

1. User i is activated with probability ai.

2. If user i is active, they pickm friends to influence. The probability individ-
ual j is chosen as a friend is determined by pij ∝ |xi−xj |−β . If individual
j is chosen we set the current adjacency value at time t to Aij(t) = 1
(Aij(t) = 0 otherwise). Thus when the opinions are more similar, the
probability of a link is greater at that time.

3. If Aij(t) = 1, with probability r we set Aji(t) = 1. Thus friends you
choose to interact with can also influence you.

4. Finally, the opinion variable is updated in time according to Equation 47.

dxi

dt
= −xi +K

∑
j

Aij(t) tanh(αxj) (47)
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In Equation 47, the first term on the right leads to the opinion becoming
less strong (closer to zero) in the absence of friend influence. The second term
models the influence of friends at time t, where the tanh function saturates at
−1 or 1 depending on the opinion xj of friend j. The parameters α and K
determine how much influence the friends’ opinions have on i at the next time
step. In Figure 22, we plot a visualization of the network at the beginning
of the simulation and after 1000 time steps. We can see that initially there is
polarization, but that there are still quite a few connections between individuals
of differing opinions. Later, as opinions become more polarized, echo chambers
form where individuals almost only interact with individuals of similar opinions.

Figure 22: Network with nodes colored by opinion variable (blue vs. red) at
start (left) and end (right) of simulation of the echo chamber model in [3]

.

5.3 Chapter 5 Exercises

1. In this assignment we will analyze short descriptions of news articles from
the Huffington Post (provided in the data huffpost.csv on Canvas).

a. First import the data using pandas and inspect the columns and the first
few rows.

b. Next let’s find the top 10 most common words by ”category” of ar-
ticle. First use “str.split” on the “short description” column to break each
paragraph into separate words. Next use pandas “explode” to create a long
dataframe where each word is in a new row. Convert each word to lower case
using “str.lower” and then finally use a groupby aggregation (similar to the
Chicago hotspot assignment) to count the frequency of words.

c. Repeat b), but this time with “stop words” removed.
d. Use the sentiment function in the textblob package to computer the

sentiment of each short description. What is the average sentiment of U.S.
NEWS and ENTERTAINMENT categories?

e. Fit and assess a regression model to predict U.S. NEWS vs ENTER-
TAINMENT articles. Subset the data to only those categories. Use sklearn’s
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TfidfVectorizer to convert the text data to keyword features. Fit a ridge regres-
sion classifier on 2/3 of the data. Assess the accuracy of the classifier on the
remaining 1/3 of the data. What keywords correspond to the largest coefficients
of the model?

2. Simulate the dynamic model for echo chamber formation in Section 5.2 using
the parameters K = 3, β = 3, α = 3, r = 0.5, m = 10, γ = 1.1 for N = 100
individuals. Use forward Euler with dt = 0.01 to solve Equation 47 for T = 1000
time steps. Make a plot of the final network with adjacency matrix A(1000),
where the nodes are colored according to their final opinion variables xi. Also
keep track at each time of how many connections there are in the network
between individuals whose opinions are different, e.g. xixj < 0. Make a plot
over time of the number of such connections.

6 Phylogenetic analysis

In Chapter 7 of RoC, we saw how phylogenetic analysis of DNA from viruses
can help us track outbreaks and answer questions related to when an epidemic
first arrived in a region and the history of its evolution. For example, if a virus
is fast-evolving, and DNA sequencing in a region shows little variation across
cases detected, that would indicate the virus is relatively new to the area. We
also saw that phylogenetic analysis can be applied to written text, for example
to trace the origin and evolution of folk tales.

6.1 Hamming distance

Consider the two genetic sequences below, consisting of a sequence of characters
A, C, G, T representing the four nucleotide base pairs of DNA:

ACTGAATC

AATGCATC

We can calculate the “Hamming distance” between the two sequences, which
is the number of characters that differ between the sequences. We have shown
in red the two characters that are not the same, indicating that the Hamming
distance is 2. Sometimes the Hamming distance is normalized by dividing by
the length of the sequence.

The Hamming distance tells us how close two sequences from two different
samples of a virus are genetically. If the Hamming distance is small for two
SARS-COV-2 RNA sequences, for example, then they are more likely to be the
same variant (e.g. both omicron or both delta). We can use the biopython
package8 to calculate the Hamming distance between sequences and construct
a phylogenetic tree.

8https://biopython.org/
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6.2 Sequence alignment

Often a pre-processing step called sequence “alignment” is required before com-
paring two or more genetic sequences. For example, consider the following two
sequences:

ACTAGC

TACTGC

where an A has been inserted in the first sequence between T and G and a T
has been inserted at the beginning of the second sequence. These sequences can
then be aligned as:

-ACTAGC

TACT-GC

where a dash has been inserted for the missing T in the first sequence and the
missing A in the second sequence. We then can compute the similarity of the
aligned sequences (for example using Hamming distance).

A number of algorithms exist for sequence alignment (which is called multiple
sequence alignment in the case when three or more sequences are aligned at
the same time). Roughly speaking, insertions can be added through trial and
error, where the similarity between sequences can be computed for proposed
insertions, and then if the sequences are more similar with an insertion, we keep
it in the sequence (otherwise we reject the proposal). This type of algorithm falls
under the category of dynamic programming. Other heuristic based algorithms
attempt to match patterns between the sequences (for example, the “ACT” and
the “GC” patterns in the example above). The biopython package has several
algorithms implemented for pairwise and multiple sequence alignment.

6.3 Phylogenetic tree and UPGMA algorithm

With many different DNA/RNA sequences, for example coming from different
virus variants or different species of animals, it can be useful to group or “clus-
ter” the sequences in a phylogenetic tree. The tree can be thought of in the
same way as a family tree, where ancestors are placed earlier in the tree, and
then sequences branch-off to form separate lineages. The closer two sequences
are in the tree, the more closely related are the virus variants or species. We
show an example tree computed using biopython in Figure 23.

There are a number of different algorithms for clustering genetic (or textual)
sequences, so we will just present one here to give you an idea of how it can be
done. The algorithm is called Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) [15].
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Figure 23: Phylogenetic tree of four sequences.

Suppose we wish to cluster the following four sequences:

CTAG

CTAA

ATGA

TAGA

The first step is to construct a matrix M where entry mij is the Hamming
distance between sequence i and j. For the above four sequences we get:

0 1 3 4
1 0 2 3
3 2 0 2
4 3 2 0

 (48)

For example, sequence 1 and 2 differ by 1 character, so m12 = m21 = 1. How-
ever, sequence 1 and 4 differ by 4 characters, so m14 = m41 = 4. Note that in
biopython these values are divided by the sequence length (which in this case if
4).

The UPGMA clustering works iteratively, where given the current matrix,
we pick the two sequences that are closest and combine them into a group. In
this case we combine 1 and 2, and thus are left with groups (1, 2), 3, 4. We then
update the distances in a new matrix, which is the distance between these three
groups. The distance between sequence 3 and 4 is still the same, but now we
find the distance between the group (1, 2) and the other sequences using the
arithmetic mean of the distances of 1 and 2 to the other sequences in the matrix
(hence the name UPGMA). Because sequence 1 is distance 3 to sequence 3, and
sequence 2 is distance 2, the distance from (1, 2) to three is the average: 2.5.
Similarly, the distance of (1, 2) to sequence 4 is 3.5. We then get the following
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matrix representing the distances from the three groups (1, 2), 3, 4: 0 2.5 3.5
2.5 0 2
3.5 2 0

 (49)

We then proceed iteratively, where we pick the 2 closest groups in this matrix,
which are sequences 3 and 4 (that are 2 apart). We thus combine them into a
group, (3, 4), resulting in two remaining groups (1, 2) and (3, 4) and matrix:[

0 3
3 0

]
(50)

Here the distance of group (3, 4) to (1, 2) is the average of 3 to (1, 2) and 4 to
(1, 2), which is (2.5 + 3.5)/2 = 3. Because there is only one remaining pair of
groups, the final tree is given by ((1, 2), (3, 4)).

This python colab notebook9 contains example code for creating sequence
objects, computing Hamming distance, aligning sequences, and performing UP-
GMA clustering.

6.4 Chapter 7 Exercises

1. The CSV file from canvas “covid sequences.csv” contains 5 sequences labeled
omicron, mu, delta, alpha and gamma. The CSV also contains an unlabeled
6th sequence. Compute the Hamming distance of the the 6th sequence to the
first 5 labeled sequences to determine which variant the new sequence is likely
to be.

2. Cluster by hand the following four sequences using the UPGMA algorithm.
Then use the biopython algorithm to check your work.

AACT

CTAG

AACA

CGAA

3. Run the UPGMA algorithm in biopython on the data from question 1 and
create a plot of the phylogenetic tree.
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