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Abstract 

Recent research leaves little doubt that crime is concentrated at micro-geographic scales. Much 

less is known about how spatial concentration of crime and crime pattern dynamics interact. This 

paper examines how the concentration of crime and the stability of crime hotspots changes as a 

function of the spatial and temporal scale of measurement. We find that crime is more 

concentrated when measured at finer spatial and temporal scales, but also more dynamic. As the 

scale of measurement increases, crime becomes more diffuse but the corresponding hotspots are 

also more stable. This fundamental tradeoff between concentration and dynamics is law-like in 

its behavior. The tradeoff has important implications for both theoretical understanding of crime 

patterns and hotspot policing. 
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Introduction 

 

Current thinking in crime pattern theory relies on two somewhat contradictory 

observations. On the one hand, it is well-known that a small fraction of locations in any one 

environment account for a large fraction of the crime (Sherman et al. 1989, Weisburd 2015). On 

the other, there is good evidence that crime events themselves occur with a high degree of 

spatial-temporal variability (Bowers et al. 2004, Mohler et al. 2011, Short et al. 2009, Wang et 

al. 2013, Wang and Brown 2012, Wang et al. 2012). 

Both observations hold important implications for understanding not only the causes of 

crime, but also designing crime prevention strategies. The former observation tends to encourage 

the view that crime patterns are predominantly static, persisting from one time period to the next 

in a roughly constant spatial configuration. The implication is that there is a tight coupling 

between crime and place that remains reasonably stable over time (Weisburd et al. 2012). If true, 

then it is clearly advantageous for police to repeatedly target the same places to achieve crime 

reduction (Sherman and Weisburd 1995). 

The latter observation, by contrast, encourages the view that crime patterns are 

predominantly dynamic, with hotspots emerging, spreading, and dissipating only to reemerge in 

new locations (Johnson et al. 2008, Short et al. 2010). The implication is that crime is coupled to 

place quite loosely via a probabilistic decision making process (Brantingham and Brantingham 

1978, 1981, Maltz et al. 1990, pg. 1). If true, then police may find advantage in anticipating how 

that probabilistic process is evolving in space and time and target a shifting series of locations on 

the landscape (Bowers et al. 2004, Mohler et al. 2011, Wang et al. 2013, Wang and Brown 2012, 

Wang et al. 2012). Recent work has looked at whether dynamic targeting of places by police has 
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an impact on crime (Gorr and Lee 2015, Mohler et al. 2015, Telep et al. 2014). The present work 

seeks to show how both of these perspectives can simultaneously be true. 

Our presentation gets straight to the point. We forego a review of the theoretical and 

empirical literature on crime and place, as there are several recent works that cover such 

information in great detail (see also Eck and Weisburd 1995, Weisburd et al. 2016, Weisburd et 

al. 2012). We therefore focus singularly on the analysis of crime concentration and the dynamics 

of crime hotspots. The paper is structured as follows. In section 1, we introduce our analytical 

approach, which is motivated by recent studies on the micro-geographic patterning of crime and 

place (Weisburd 2015, Weisburd et al. 2004, Weisburd et al. 2012, Wyant et al. 2012). As in 

Weisburd (2015), we are interested in the concentration of crime in a small number of 

geographic locations. However, we focus on how measured crime concentration changes as both 

the temporal and spatial windows for counting crime change (see also Brantingham et al. 1976, 

Chainey et al. 2008, Steenbeek and Weisburd 2016, Townsley 2008). We are also interested in 

measuring the stability of crime patterns in the context of changing spatial and temporal scales. 

We introduce a very simple measure that counts the percentage overlap in hotspot locations from 

one time period to the next when measured at different temporal and spatial scales (see Mohler et 

al. 2015). The approach is far simpler than other recent assessments of crime pattern stability 

(Johnson et al. 2008, Weisburd et al. 2004, Weisburd et al. 2012), but offers practical advantages 

in terms of ease of interpretation. 

Section 2 turns to empirical assessments. We analyze crime patterns in Los Angeles 

during the years 2009-2015, and Chicago during 2008-2015. In both settings, we analyze assault, 

burglary, motor vehicle theft, and robbery, independently for each crime type. We offer 

theoretical motivation for choosing these crimes based on fundamental differences in the 
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potential mobility of offenders and victims involved in each of these crime types (Tita and 

Griffiths 2005). 

Section 3 presents our two principal findings. First, hotspots defined at smaller temporal 

and spatial scales capture the same amount of crime, while covering less total land area. In other 

words, crime appears to be much more concentrated when using smaller, short-term counting 

units compared with larger, long-term counting units. Second, hotspots defined at smaller 

temporal and spatial scales are much more dynamic than those defined at larger temporal and 

spatial scales. In other words, small, short-term hotspots spatially overlap much less from one 

time period to the next compared with larger, long-term hotspots. There is thus an apparent 

tradeoff with crime hotspot characterization. Smaller, short-term hotspots are better at 

identifying the highest crime concentrations in an environment, but those locations change 

substantially in placement at that short time scale. Alternatively, more stable crime patterns can 

be identified by adopting larger spatial and temporal scales, but at the cost of reduced crime 

concentration. 

The final section discusses implications of the work. We discuss how the concentration-

dynamics tradeoff impacts our understanding of crime causation. We then draw some general 

observations about the scale of analysis and policing and crime prevention. The punchline is that 

crime patterns do not exist only at one scale (Brantingham et al. 2009, Steenbeek and Weisburd 

2016). This is not necessarily an indication of aggregation bias. Rather, it is indicative of 

behavioral processes operating at different scales. Policing and crime prevention efforts can 

benefit from calibrating to these scales. 

 

Methods 
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Our methodological approach is divided into four principal parts. The first involves 

defining the spatial and temporal counting units for hotspot quantification. The second concerns 

measuring the global concentration of crime given those spatial and temporal units. The third 

concerns assessing the spatial stability (or lack thereof) of hotspots from one time period to the 

next. Our measure of spatial stability of hotspots is likely dependent upon macroscopic patterns 

of how smaller spatial units are organized into larger clusters (see Steenbeek and Weisburd 2016, 

Weisburd et al. 2012). We therefore also tabulate cluster sizes for each spatial and temporal 

scale. 

We adopt a straightforward method for defining spatial and temporal counting units. Our 

spatial units are constructed as a regular square lattice or grid laid out over the entire jurisdiction. 

Specifically, we examine grids where each cell is 200 x 200, 400 x 400, or 800 x 800m in size. 

Fixed grid counting units may be contrasted with categorical spatial units such as street segments 

(Davies and Bishop 2013, Weisburd et al. 2012), reporting districts, census tracts, or formally 

recognized neighborhoods (Wooldredge 2002). Our temporal units are similarly defined in 

discrete terms as fixed time windows measured in days, months, or years. These discrete spatio-

temporal units lead naturally to a histogram method for counting crime. We count all of the 

crimes of a specified type occurring in each grid cell during each defined time period. For 

example, we will count all of the robberies occurring in each 200 x 200m grid cell per day, or all 

burglaries in each 400 x 400m grid cell per month. Note that common hot spotting methods such 

as kernel density estimation (KDE) are closely related to the histogram counting procedure 

suggested here, as both are non-parametric estimators for the probability density function of a 

point process. 
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After counting the number of crimes within grid cells, the resulting counts are ranked in 

decreasing order by crime count. For example, the Rank 1 cell will contain the greatest number 

of crimes among all cells, the Rank 2 cell will contain the second greatest number of crimes, and 

so on. It follows that the Rank 1 cell will capture the greatest percentage of crime compared to 

all other individual cells for that specific time period, the Rank 2 cell will capture the next 

greatest percentage, and so on. Starting at the top of the ranked list, we flag each cell in order 

until the collection of flagged cells in total represents a predefined cumulative percentage of the 

total crime over that time window. For example, we might flag cells until 5%, 10%, 25% or 50% 

of all crime within that time period is captured by those cells.  

For simplicity, we will use the term hotspot to refer to an individual grid cell flagged in 

this way. All of the cells not flagged in this way are not considered crime hotspots for that 

particular cell size and time period. Collections of flagged grid cells are referred to as clusters, 

when they form contiguous spatial blocks, or simply by the plural hotspots, when their spatial 

arrangement is not relevant. Note that our procedure is very closely related to Weisburd (2015), 

who counts the percentage of all street segments needed to capture a fixed percentage of crime 

(see also Weisburd et al. 2004, Weisburd et al. 2012). To facilitate comparison with Weisburd’s 

results we report results for hotspots capturing 25% and 50% of crime, respectively. We caution, 

however, that crime counts aggregated by street segments and areal units such as grid cells may 

not be strictly equivalent (see Steenbeek and Weisburd 2016). 

It is a simple matter to convert the number of crime hotspots into a measure of crime 

concentration. First, the number of flagged hotspots is converted into an area by multiplying by 

the known area of each cell (e.g., 200 x 200 m). Dividing this total hotspot area by the total land 

area of the jurisdiction yields the percent land area needed to capture a fixed percent of crime. 
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The smaller the percentage land area sufficient to capture a target crime percentage, the more 

concentrated crime is in space. For example, crime is two times more concentrated if 0.1% of a 

jurisdiction’s land area captures 25% of crime, compared with 0.2% of the total land area 

capturing 25% of crime.  

We measure hotspots stability in a similarly direct manner. For any given collection of 

crime hotspots, we measure the percentage overlap in hotspot locations from one time period to 

the next. For example, imagine a collection of one hundred hotspots each 400 x 400m in size 

sufficient to capture 25% of recorded crime over the course of one month. Now imagine that we 

perform the same analysis for the following month, again yielding one hundred hotspots of the 

same size. We then compare the hotspot locations from month 2 with those present in month 1 

and find that 50% of the locations are the same. Thus half of the pattern is stationary at this 

temporal and spatial scale, and the other half is dynamic. Our approach is similar to Andresen 

(2011) wherein spatial units are compared across two time periods for the volume of crime 

present. Units are scored as stationary if the volume of crime is statistically equivalent across 

time periods. Our approach is considerably different from Weisburd et al. (2004) and Weisburd 

et al. (2012) who use group-based trajectory analysis to identify latent hotspot groups given the 

entire history of crime on street segments over a 16 year time period. They find that some latent 

groups display very stable crime patterns at an annual time scale over the study period, while 

others display secular variation in crime volume over time. 

We also examine hotspot cluster sizes. To find the size of a hotspot cluster, we simply 

count the number of contiguous flagged hotspots present in a given time window. The counting 

procedure is as follows. Given a starting grid cell flagged as a hotspot, each immediately 

adjacent cell is joined to the same cluster if it is also flagged as a hotspot. These first-order 
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neighbors are then used to look for unique adjacent cells that are also flagged as hotspots. These 

comprise second-order neighbors. The process is repeated until no unique hotspots can be joined 

to the component. We are primarily interested in how cluster size changes as a function of the 

spatial and temporal scale of measurement. To assess whether observed cluster sizes are different 

from what would be expected given random occurrence of crime, we simulate random hotspot 

placement for equivalent hotspot densities and then compute cluster sizes using the method 

above for these randomly placed hotspots. 

 

Crime Patterns in Los Angeles and Chicago 

 

Our analyses focus on crime patterns in Los Angeles, California, and Chicago, Illinois. 

Los Angeles is a city of nearly 4 million people and encompasses a land area of approximately 

1,301 square km (509 square miles). Address-geocoded data on aggravated assault, burglary, 

motor vehicle theft, and robbery were provided by the Los Angeles Police Department for the 

years 2009-2015. Chicago is a city of approximately 2.7 million people and covers an area of 

606 square km (234 square miles). We obtained block-geocoded open source data from the City 

of Chicago Open Data Portal (https://data.cityofchicago.org), which we examine for the years 

2008-2015. 

Our focal crime types are chosen because each encompasses different fundamental 

potentials for dynamic behavior given the mobility of offenders and victims or targets. At one 

extreme, we might expect burglary hotspots to inherently have lower dynamic potential. By 

definition, the offender in a burglary is mobile, but the target is stationary. Assuming that houses 

change in their baseline attractiveness only very slowly, then any temporal and spatial dynamics 
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in burglary hotspots must be tied only to how burglars move and mix in the broader 

environment. At the other extreme, we might expect assault and robbery to inherently have 

higher dynamic capacity. Both crime types can involve mobile offenders and mobile victims (see 

Tita and Griffiths 2005). Hence, robbery and assault hotspots may be less tied to place because 

offenders and victims can move and mix independent of place. Between these extremes we 

might expect to find motor vehicle theft. In this case, the offender is mobile but targets 

experience short-term turnover in the composition of the car assemblage (Brantingham 2013). 

The nature of the opportunity for motor vehicle theft shifts through space and time as car 

assemblages change. At an abstract level, we might expect motor vehicle theft hotspots to have 

intermediate dynamic capacity. 

For both Los Angeles and Chicago, we count crimes in grid cells of size 200 x 200, 400 x 

400, and 800 x 800 m. While ultimately each of these is an arbitrary length scale, the finer spatial 

unit is consistent with the linear dimensions of street blocks in many American cities. Thus a 

short-hand way to think about the length scales is as one, four, and sixteen square block areas. 

The largest length scale we consider is at the small end (~0.064 square km) of what would be 

perceived as a neighborhood in inner-city contexts (Pebley and Sastry 2009). 

The availability of years’ worth of crime data means that we can examine multiple time 

windows for scoring hotspots. We use one week, one month, three month, six month, and one 

year time windows for both Los Angeles and Chicago. In Chicago, we also examine crime 

patterns at two-year intervals. In both Los Angeles and Chicago, we also look at each sample as 

a whole, representing seven years in Los Angeles and eight years in Chicago. 

 

Results 
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We first examine patterns in Los Angeles. Figure 1 presents crime concentration as a 

function of the time window at which hotspots are quantified. Shown is the percentage land area 

necessary to capture 25% and 50% of crime, respectively, with time windows ranging from one 

week (7 days) to 7 years (2555 days). The length scale for hot spotting in Figure 1 is 200 x 

200m. Figure 1A shows the results for robbery, while Figure 1B shows the results for burglary. 

Numerical results for all four crime types are presented in Table 1. 

Crime is clearly more concentrated when the time window used for hotspot quantification 

is shorter. For example, when hotspots are computed with 7 day time windows, approximately 

0.1% of the total land area must be flagged as hotspots to capture 25% of robberies (Table 1). 

The percentage land area needed increases to 0.3% when the time window is 1 month. In other 

words, robberies are 3 times more concentrated with hotspots measured on the scale of 7 days 

compared with one month. When the time window is further increased to 3 months, 6 months, 

and one year, the percentage land area needed climbs to 0.5%, 0.7% and 0.8%, respectively. At 7 

years, the full temporal extent of our data, 1.1% of the total land area needs to be flagged to 

capture 25% of crime. In other words, robberies are 11 times more concentrated when measured 

at the 7 day scale compared with the 7 year scale. This pattern is replicated for each of the crime 

types considered here and when the target crime fraction for hotspots changes to 50% (Table 1). 

For example, the percentage land area necessary to explain 50% of burglaries increases from 

0.4% of land area to 12.5% of land area when the time window for hot spotting increases from 7 

days to 7 years, respectively. Burglaries are 31 times more concentrated at the shortest versus the 

longest time scale considered. The empirical pattern is well-fit by a logarithmic function of the 

form 𝑦 = 𝑎 ∗ 𝐿𝑁 𝑥 + 𝑏. 
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Figure 2 examines the dynamics of crime hotspots as a function of hot spotting time 

window. The percentage overlap in the location of crime hotspots from one time period to the 

next increases as the time window increases (Table 1). This indicates that hotspots measured at 

shorter time-scales are much more dynamic than those measured at longer time scales. For 

example, only 2.9% of robbery hotspots flagged in one week are in the same locations in the 

following week, when those hotspots are set to capture 25% of crime (Figure 2A). The vast 

majority of flagged robbery hotspots are in different places from week to week. When the time 

window is increased to 1 month, 11.9% of robbery hotspots on average are flagged in the same 

location from one month to the next. This represents a greater degree of stability in crime 

patterns, but the majority of flagged locations still differ from month to month. For hotspots 

quantified on a yearly time scale, 47.2% of hotspot locations are the same location from year to 

year. The quantitative pattern is the same when the criterion for designating robbery hotspots 

shifts to capturing 50% of crime (Figure 2A). Burglary crime patterns similarly increase in 

stability with increasing hot spotting time window, but here the stability is more pronounced 

when seeking to capture 50% of crime compared with 25% of crime (Figure 2B). The 

relationship is well-fit by an exponential function of the form 𝑦 = 𝑎 − 𝑎𝑒,-.. 

Given the data on hand, we can examine the interaction between crime concentration and 

hotspot dynamics. Figure 3 shows the percentage overlap in hotspot locations from one time 

period to the next against the percentage land area sufficient to capture 25% and 50% of crime 

(Table 1). Hotspots flagged using shorter time windows are more concentrated in space, but also 

more dynamic. Those flagged using longer time windows are less concentrated, but also more 

stable. The relationship between these two measures of crime patterns is non-linear. The non-

linear trend is very pronounced for robbery patterns (Figure 3A). It is also visible for burglary 



 12 

patterns where hotspots are flagged for 25% of crimes. It is less obvious that the trend is non-

linear where hotspots are flagged for 50% of burglaries. Assault and motor vehicle theft follow 

the burglary pattern (Table 1). Nevertheless, the relationship is well-fit by a polynomial equation 

of the form 𝑦 = 𝑎𝑥/ + 𝑏𝑥. 

All of the results presented in Figures 1-3 were computed for a spatial grid with 200 x 

200m cells. A larger spatial length scale produces equivalent results (Table 2). Figure 4 is a 

direct extension of Figure 3 across three different spatial length scales for hotspots capturing 

25% of crime. Note that the 200m curves in Figure 4A and 4B match exactly the 25% curves in 

Figures 3A and 3B, respectively. At each spatial length scale it is clear that shorter time windows 

produce greater crime concentration, but also yield more dynamic hotspots. Longer time 

windows produce lower crime concentration, but hotspots are more stable. With the 200m curve 

from Figure 3 for reference, it is clear that increasing the spatial length scale shifts the 

relationship between concentration and dynamics up and to the right. A larger grid size requires a 

greater percentage land area to capture the same amount of crime, but also produces greater 

stability in hotspots across time periods. Table 2 illustrates the relationship for hotspots defined 

for one year time windows. For example, for assaults the mean percentage of land area sufficient 

to capture 25% of crime increases from 1.1% to 2.8% as the spatial length scale increases from 

200 x 200m to 800 x 800m. The percent overlap in assault hotspots also increases from 28.1% to 

63.3% over the same range of spatial scales. 

To illustrate that the observed patterns are not unique to the Los Angeles setting we 

computed the same metrics for Chicago. Tables 3 and 4 present the primary results. Figure 5A 

shows the percentage overlap in hotspot locations against the percentage land area required to 

capture 25% of robberies and burglaries for a 200 x 200m length scale. The functional form for 
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the relationship is equivalent to that seen in Los Angeles, though the quantitative parameters for 

the fitted models differ depending upon crime type. In Chicago, for example, hotspots sufficient 

to capture 25% of robberies over a one year time scale cover 2.3% of the total land area (Figure 

5A; Table 3). The overlap in hotspot locations is 46.5% from year to year. By contrast, in Los 

Angeles, hotspots sufficient to capture 25% of robberies cover only 0.8% of the total land area, 

while 47.2% of locations overlap from year to year. The numerical comparisons for burglary are 

more similar (see Tables 1 and 2). 

Shifting to a larger spatial length scale of 800 x 800m replicates many of the same 

patterns (Figure 5B; Table 3). For example, at a yearly time scale hotspots needed to capture 

25% of robberies in Chicago cover 5.7% of land area, while 66.4% of those hotspots remain in 

the same place from year to year. In Los Angeles, the comparable figures are 2.2% of land area 

and 67.6% overlap. Overall, the relationship between crime concentration and the dynamics of 

hotspots displays considerable regularity across regions. 

All of the analysis to this point has focused on discrete hotspot locations. For example, 

we have examined the concentration of crime within and dynamics of discrete 200 x 200m cells 

defined with fixed time windows. Here we consider whether these discrete locations cluster to 

form larger components and how cluster size is dependent upon the spatial and temporal lengths 

scales used. This was an issue first addressed by Brantingham et al. (1976). 

Tables 5 and 6 show the observed and expected average size of the largest hotspot cluster 

for any given hot spotting time window. Results are presented for 200 x 200m hotspots sufficient 

to capture 25% of crime. The results are consistent for larger spatial length scales and for higher 

crime percentage targets. Table 5 presents data from Los Angeles. Table 6 presents data from 

Chicago. 
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For any given spatial and temporal length scale, individual hotspots cluster to form larger 

components. For example, the largest assault hotspot clusters in Los Angeles for a 7 day time 

window contains on average 1.3 cells each 200 x 200m in size (Table 5). At one month, the 

largest assault hotspot clusters are typically 2.9 cells. This rises to 6.7, 11.5, 19.6 and 34 grid 

cells for 3 months, 6 months, 1 year, and 7 years, respectively. Whether these clusters are larger 

or smaller than those expected by chance varies with the time window for hot spotting. The 

expected hotspot cluster size is computed by taking the observed number of hotspots for any 

given time window and generating 103 repeated random spatial placements of that same number 

of hotspots. We restrict random cell placement to only those locations that recorded at least one 

crime over the given time period. The largest observed clusters are typically smaller than that 

expected by chance for hot spotting time windows of one month or less. For example, the largest 

observed 30 day robbery cluster in Los Angeles is typically 4.9 cells in size, while that generated 

by random placement is typically 6.5 cells in size (Table 5). For hot spotting time windows of 3 

months, however, the typical maximum cluster size is very similar to that occurring by chance. 

Beyond 3 month hot spotting windows, the observed maximum cluster sizes are larger than that 

expected by chance. For example, 6 month burglary hotspots in Los Angeles are typically 11.1 

cells in size compared with 9.9 cells by chance. The size difference is much larger at one year 

with observed burglary hotspot clusters of 18 cells compared with 12 expected by chance. At the 

maximum time window, the gap becomes 74 cells observed compared with 12 expected by 

chance for burglary hotspot clusters. Equivalent patterns are observed in Chicago (Table 6). 

Importantly, crime appears to be more concentrated into spatially contiguous counting units 

when measured at larger temporal scales than at smaller temporal scales.  
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Discussion & Conclusions 

 

There is a clear tradeoff between crime concentration and the dynamics of the 

corresponding crime patterns. The tradeoff is driven by the spatial and temporal scale of 

measurement. Crime appears to be more concentrated when measured using smaller spatial units 

and shorter time windows. The same percentage of crime is captured in a smaller percentage land 

area when the flagged hotspots are small in spatial extent and brief in temporal duration. 

However, crime measured at finer scales is also more dynamic. A larger fraction of hotspots shift 

locations from one time period to the next when those locations are small in spatial extent and 

brief in temporal duration. 

The tradeoff between concentration and dynamics is more than just an artifact of the scale 

of measurement. There is good reason to link the tradeoff to fundamental causal processes 

occurring at different scales. Short-term crime pattern dynamics reflect local stochastic 

fluctuations in situational conditions and criminal opportunities. This is where we expect random 

effects in offender decision making and crime opportunities to dominate measured patterns. For 

example, a collection of street segments may differ in the total number of parking spaces from 

one segment to the next, which may lead to differences in the average density of motor vehicle 

theft (Brantingham 2013). However, that one of these street segments today happens to have 

more late 1990s model Honda Civics parked there, and therefore more thefts today, may be 

entirely random. Tomorrow it may be another of the street segments in the set that has a higher 

density of such cars, or perhaps none of them does. Such random fluctuations in opportunity will 

be very visible if hotspots are measured at short spatial and temporal scales. Such variation is 
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averaged out when measured at larger spatial and temporal scales. It is at these larger scales that 

mesoscopic routine activity processes take hold. The density of parking spaces regulates not only 

the relative volume of offenders and targets, but also how they move and mix. We expect these 

routine activity patterns to be more stable precisely because the density of parking spaces across 

street segments does not change on short time scales. Such processes will generate a clear signal 

when measuring motor vehicle theft hotspots over months or years. 

Close inspection of Tables 1 and 3 suggest that our assumptions about the dynamic 

capacities of different crime types are inconsistent with observed patterns. We relied on general 

principles from routine activities theory to suggest that burglary would be the least spatially and 

temporally dynamic of crimes, robbery and assault the most dynamic, and motor vehicle theft 

somewhere in between. If we compare robbery and burglary in Los Angeles, robbery hotspots 

overlap to a much greater degree from one time period to the next compared with burglary 

(Table 1). For example, with 200 x 200m cells sufficient to capture 25% of crime on a yearly 

basis, 47.2% of robbery hotspots remain stationary from one year to the next. Only 23% of the 

burglary hotspots remain in the same place from year to year. This general observation holds true 

for robbery and burglary across all time scales of observation. The pattern also holds true for 

robbery and burglary in Chicago for all time scales save the shortest time window (Table 3). It 

would seem that robbery hotspots are less dynamic than burglary hotspots in spite of the 

potential mobility of both offenders and victims in the case of robbery. The patterns are 

somewhat more complex for assault and motor vehicle theft (Table 1). Assault and motor vehicle 

theft hotspots are more dynamic than burglary hotspots in Los Angeles for longer time scales of 

a year or more, contrary to our initial assumptions, but more dynamic at shorter time scales, 

consistent with our assumptions. In Chicago, assault hotspots are less dynamic and motor vehicle 
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thefts more dynamic compared to burglary across all time scales. These results also show that 

there are potential regional differences in relative hotspot dynamics among different crime types. 

Nevertheless, the concentration-dynamics tradeoff observed in both Los Angeles and 

Chicago is very regular, or law-like in its behavior . A candidate law-like statement is PAI ∗ 𝑂 =

𝐾. Here PAI is the predictive accuracy index and O is the percent overlap in hotspot locations for 

crime patterns measured at a given spatial and temporal scale. Recall that PAI is the percent 

predicted crime C divided by the percent area covered by predictions A. Here we equate the area 

covered by predictions with the area covered by flagged hotspots, making PAI retrospective 

rather than prospective. PAI is thus an index of crime concentration. For the above equation to be 

law-like in its behavior we want K to be a constant for all temporal and spatial scales. For the 

target levels of crime considered above, the equation becomes 𝐶 ∗ 𝑂 𝐴 = 𝐾, with C = 25% or 

50%. This form of the equation clearly shows that the percentage overlap in hotspots between 

two adjacent time windows O must increase proportionally with A for K to be a constant. The 

constant of proportionality linking hotspot overlap to area flagged as hotspots is K/C. 

Figure 6 shows values of K plotted against the time window for crime hot spotting for all 

four crime types considered here. For K to be a constant for a given crime type, we would expect 

that the slope of the curve relating K to the time window for crime hot spotting in Figure 6 to be 

zero. In both Los Angeles and Chicago, computed slopes for these curves are not significantly 

different from zero for burglary (Los Angeles: p = 0.158; Chicago: p = 0.158) and motor vehicle 

theft (Los Angeles: p = 0.576; Chicago: p = 0.809). In other words, K is a constant estimated by 

the intercept of the regression equation (Figure 6). In Los Angeles, the computed slope is also 

not significantly different from zero for assault (p = 0.186), but is marginally different from zero 

for robberies (p = 0.053). This indicates law-like behavior for assaults in Los Angeles, but not 
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necessarily for robberies. In Chicago, the computed slope is significantly different from zero for 

both assaults (p = 0.005) and robberies (p = 0.002). Thus, for five out of eight examined crime 

types, the tradeoff between concentration and dynamics appears to be constant over a range of 

temporal scales. Whether this is truly law-like behavior will require more theoretical and 

empirical investigation, focusing not only on more geographic settings, but also on the full 

combinatorial range of spatial and temporal scales. 

The concentration-dynamics tradeoff presents some practical challenges beyond the 

theoretical ones mentioned above. The tradeoff is an inherent challenge for policing and crime 

prevention at a given focal scale. It seems reasonable to suggest that the more concentrated crime 

is in an environment the greater the potential impact of directed police patrol on crime given 

limited policing resources (Sherman and Weisburd 1995, Weisburd 2015). Since crime is 

demonstrably more concentrated when measured at finer spatial and temporal scales, then a clear 

recommendation is that place-based policing should be focused at such micro-geographic and 

micro-temporal scales. For example, 25% of assaults in Los Angeles are successfully captured 

by flagging just 0.1% of the total land area on a weekly basis with 200 x 200m grid cells (Table 

1). Policing such a small fraction of the city may have an outsized impact on the problem. 

However, focusing at such small scales also necessitates that place-based policing be dynamic. 

To consistently capture 25% of assaults each week, 99.2% of those locations must also change 

each week. If, however, we determine hotspot cells every month rather than every 7 days, then 

we must double the number of cells to 0.2% of the city to capture the same 25% of crime. In 

other words, failing to adjust micro-geographic hotspots in sufficiently dynamic fashion would 

either necessitate a doubling of police resources to cover the increased number of hotspots, or 

reduce the amount of crime targeted by place-based policing as crime concentration is 
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necessarily lower if we hold constant a fixed number of flagged hotspots. Assuming that the 

same policing tactic has equal effects across different places, the simple difference in exposure 

arising from insufficiently dynamic hot spotting would be expected to produce less crime 

prevention.  

The assumption of equal effects of policing and crime prevention efforts across space is 

of course dangerous (Cousineau 1973, Groff et al. 2015). Efforts to build community trust, for 

example, may find great success in some places and fail in others (Tyler 2005). Moreover, there 

is still considerable uncertainty about the comparative effects of different tactics in and of 

themselves (see Groff et al. 2015). It seems plausible that different policing and crime prevention 

tactics also have effects that operate at different spatial and temporal scales. We expect policing 

and crime prevention strategies targeting places and times proximal to the criminal event will 

mainly have local, short-term effects. Strategies targeting places and times distal to the criminal 

event may primarily drive broader, long-term changes. 

Consider, for example, a city in which bars and nightclubs are widely dispersed across 

the urban landscape. Knowing that a range of criminal and nuisance behavior often follow last 

call, police might choose to have a physical presence at some of those bars at closing time, 

especially on Friday nights. The presence of police exactly at closing time may go a long way 

towards disrupting the opportunity for robberies, assaults, drug deals, vandalism and public 

disorder (Berkley and Thayer 2000). Offenders and victims are already in contact with one 

another in a setting ripe for problems. Police simply prevent some types of interactions from 

occurring in spite of the existing conditions. However, the impact of such proximate 

interventions is limited to the bars targeted and likely dissipates soon after the police leave 

(Cohen et al. 2003, Koper 1995). By contrast, better training of place managers such as 
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bartenders for all of the city’s bars may also reduce crime and disorder rates (Sampson et al. 

2010). Here small nudges to the routine activities of bar patrons by well-trained bar tenders 

tweak the probabilities that victims and offenders mix as well as the conditions under which that 

mixing occurs. In the same way that you can only identify a subtly biased coin after a large 

number of coin flips, small probabilistic shifts in routine activities will only amount to real crime 

reduction over larger areas and over longer time horizons. Strategies that aim to change the 

physical environment or core features of culture and social organization may operate at even 

longer temporal horizons. Changing tax incentives to encourage the development of balanced-

use entertainment districts may take years to effect change (Berkley and Thayer 2000), with a 

correspondingly long time horizon for effects on crime and disorder. Programs designed to alter 

risk preferences among youth, for example smoking or alcohol consumption, may only yield 

results over decades and then only at the spatial scale of whole populations (Ng et al. 2014). 

A reasonable implication is that policing and crime prevention activities may benefit 

from adopting an analytical scale and dynamic capability appropriate to the behavioral processes 

targeted by deterrence or prevention programs (Greenberg et al. 1981). In general, policing and 

crime prevention tactics with known or expected hyper-local and short-term effects are best 

supported by analytics focused on very small-scale geographic targets. This is what is advocated 

by Weisburd (2015) and others (e.g., Groff et al. 2015, Wyant et al. 2012). But the evidence here 

suggests that such a small-scale focus should also be dynamic to approach optimal effectiveness. 

Indeed, fighting crime on short time scales may require dynamic prediction (Mohler et al. 2015, 

Mohler et al. 2011). By contrast, those policing strategies known or expected to have effects that 

operate over larger geographic areas and longer time horizons may benefit most from analytics 

that encompass larger geographic spaces and are static over time. In other words, fighting crime 
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on long time scales requires stationary pattern characterization. Aggregating in larger units 

averages over spatial and temporal heterogeneity in the system (Cousineau 1973). Policing and 

crime prevention tactics paired with analytics that are suboptimal with respect to the scale and 

dynamics of the underlying behavior may therefore also perform suboptimally. Though recent 

research seems to argue that micro-geographic units are superior to other scales, the present work 

suggests that this is only true for policing tactics and crime processes operating at such a micro-

geographic scale. Further research is required to assess how scale matching might be put to best 

effect in not only understanding the dynamics of crime, but also how best to attack such 

problems. 
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1. Tables 

 

Table 1. Los Angeles 2009-2015 average area fraction of 200m x 200m hotspots required to capture 25% and 50% 

of total crime along with the average fraction of hotspots that overlap from period to period. 

Crime 
Type 

Time 
Window Days 

Area 
Fraction 

(25%) Overlap (25%) Area Fraction (50%) Overlap (50%) 

Assault 7 year 2555 0.017 NA 0.052 NA 
Assault year 365 0.011 ± 0.001 0.281 ± 0.038 0.032 ± 0.003 0.344 ± 0.031 
Assault 6 month 182.5 0.008 ± 0.001 0.176 ± 0.032 0.023 ± 0.003 0.250 ± 0.024 
Assault 3 month 91.3 0.005 ± 0.001 0.094 ± 0.029 0.015 ± 0.002 0.146 ± 0.032 
Assault month 30.4 0.002 ± 0.000 0.044 ± 0.028 0.007 ± 0.002 0.071 ± 0.022 
Assault week 7.0 0.001 ± 0.000 0.008 ± 0.021 0.002 ± 0.001 0.023 ± 0.021 
Burglary 7 year 2555 0.043 NA 0.125 NA 
Burglary year 365 0.025 ± 0.001 0.230 ± 0.015 0.076 ± 0.003 0.317 ± 0.008 
Burglary 6 month 182.5 0.018 ± 0.001 0.149 ± 0.018 0.052 ± 0.003 0.217 ± 0.014 
Burglary 3 month 91.3 0.012 ± 0.001 0.116 ± 0.016 0.038 ± 0.003 0.182 ± 0.018 
Burglary month 30.4 0.006 ± 0.001 0.072 ± 0.020 0.017 ± 0.002 0.105 ± 0.016 
Burglary week 7.0 0.002 ± 0.000 0.025 ± 0.020 0.004 ± 0.001 0.032 ± 0.016 
MVT 7 year 2555 0.035 NA 0.097 NA 
MVT year 365 0.023 ± 0.001 0.258 ± 0.027 0.066 ± 0.002 0.352 ± 0.017 
MVT 6 month 182.5 0.017 ± 0.001 0.176 ± 0.022 0.047 ± 0.003 0.257 ± 0.026 
MVT 3 month 91.3 0.012 ± 0.001 0.117 ± 0.02 0.036 ± 0.003 0.192 ± 0.016 
MVT month 30.4 0.006 ± 0.001 0.068 ± 0.017 0.016 ± 0.002 0.099 ± 0.016 
MVT week 7.0 0.002 ± 0.000 0.027 ± 0.021 0.004 ± 0.001 0.031 ± 0.016 
Robbery 7 year 2555 0.011 NA 0.037 NA 
Robbery year 365 0.008 ± 0.001 0.472 ± 0.031 0.028 ± 0.004 0.490 ± 0.019 
Robbery 6 month 182.5 0.007 ± 0.001 0.357 ± 0.027 0.022 ± 0.003 0.385 ± 0.022 
Robbery 3 month 91.3 0.005 ± 0.001 0.250 ± 0.030 0.017 ± 0.002 0.250 ± 0.028 
Robbery month 30.4 0.003 ± 0.000 0.119 ± 0.033 0.009 ± 0.002 0.137 ± 0.022 
Robbery week 7.0 0.001 ± 0.000 0.029 ± 0.029 0.003 ± 0.001 0.047 ± 0.023 
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Table 2. Yearly hotspots of variable sizes in Los Angeles 2009-2015. Average fraction of hotspots each year 

required to capture 25% and 50% of total crime along with the average fraction of hotspots that overlap year over 

year. 

Crime Type Area Fraction (25%) Overlap (25%) Area Fraction (50%) Overlap (50%) Cell Size (km) 

Assault 0.011 ± 0.001 0.281 ± 0.038 0.032 ± 0.003 0.344 ± 0.031 0.2 
Assault 0.019 ± 0.001 0.438 ± 0.066 0.058 ± 0.003 0.547 ± 0.026 0.4 
Assault 0.028 ± 0.001 0.633 ± 0.061 0.081 ± 0.003 0.750 ± 0.036 0.8 
Burglary 0.025 ± 0.001 0.230 ± 0.015 0.076 ± 0.003 0.317 ± 0.008 0.2 
Burglary 0.046 ± 0.001 0.345 ± 0.043 0.129 ± 0.003 0.480 ± 0.019 0.4 
Burglary 0.064 ± 0.002 0.560 ± 0.070 0.174 ± 0.004 0.665 ± 0.027 0.8 
MVT 0.023 ± 0.001 0.258 ± 0.027 0.066 ± 0.002 0.352 ± 0.017 0.2 
MVT 0.039 ± 0.002 0.411 ± 0.025 0.105 ± 0.004 0.558 ± 0.014 0.4 
MVT 0.053 ± 0.002 0.631 ± 0.032 0.139 ± 0.004 0.715 ± 0.026 0.8 
Robbery 0.008 ± 0.001 0.472 ± 0.031 0.028 ± 0.004 0.490 ± 0.019 0.2 
Robbery 0.015 ± 0.002 0.586 ± 0.035 0.048 ± 0.005 0.629 ± 0.026 0.4 
Robbery 0.022 ± 0.003 0.676 ± 0.041 0.067 ± 0.006 0.804 ± 0.029 0.8 
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Table 3. Chicago 2008-2015 average area fraction of 200 x 200m hotspots required to capture 25% and 50% of total 

crime along with the average fraction of hotspots that overlap from period to period. 

Crime 
Type 

Time 
Window 

Day
s 

Area Fraction 
(25%) 

Overlap 
(25%) 

Area Fraction 
(50%) 

Overlap 
(50%) 

Assault 8 year 2920 0.037 NA 0.11 NA 
Assault 2 year 730 0.033 ± 0.001 0.559 ± 0.022 0.098 ± 0.003 0.63 ± 0.02 
Assault year 365 0.030 ± 0.001 0.478 ± 0.02 0.089 ± 0.003 0.55 ± 0.017 

Assault 6 month 
182.

5 0.025 ± 0.001 0.349 ± 0.024 0.074 ± 0.004 0.436 ± 0.021 
Assault 3 month 91.3 0.020 ± 0.002 0.259 ± 0.048 0.057 ± 0.007 0.325 ± 0.038 
Assault month 30.4 0.012 ± 0.002 0.137 ± 0.038 0.035 ± 0.005 0.206 ± 0.03 
Assault week 7.0 0.005 ± 0.001 0.057 ± 0.031 0.011 ± 0.002 0.077 ± 0.026 
Burglary 8 year 2920 0.054 NA 0.152 NA 
Burglary 2 year 730 0.045 ± 0.003 0.421 ± 0.027 0.128 ± 0.007 0.519 ± 0.051 
Burglary year 365 0.038 ± 0.004 0.338 ± 0.040 0.110 ± 0.009 0.437 ± 0.048 

Burglary 6 month 
182.

5 0.031 ± 0.004 0.260 ± 0.039 0.088 ± 0.010 0.340 ± 0.037 
Burglary 3 month 91.3 0.023 ± 0.003 0.184 ± 0.035 0.065 ± 0.010 0.262 ± 0.048 
Burglary month 30.4 0.012 ± 0.003 0.098 ± 0.033 0.037 ± 0.008 0.184 ± 0.037 
Burglary week 7.0 0.005 ± 0.001 0.056 ± 0.032 0.012 ± 0.003 0.072 ± 0.029 
MVT 8 year 2920 0.064 NA 0.165 NA 
MVT 2 year 730 0.051 ± 0.003 0.337 ± 0.055 0.136 ± 0.007 0.473 ± 0.050 
MVT year 365 0.042 ± 0.003 0.246 ± 0.035 0.114 ± 0.008 0.370 ± 0.043 

MVT 6 month 
182.

5 0.033 ± 0.003 0.179 ± 0.035 0.088 ± 0.012 0.275 ± 0.048 
MVT 3 month 91.3 0.023 ± 0.004 0.122 ± 0.036 0.063 ± 0.007 0.220 ± 0.021 
MVT month 30.4 0.012 ± 0.002 0.075 ± 0.022 0.033 ± 0.007 0.130 ± 0.032 
MVT week 7.0 0.004 ± 0.001 0.034 ± 0.026 0.009 ± 0.002 0.040 ± 0.022 
Robbery 8 year 2920 0.03 NA 0.098 NA 
Robbery 2 year 730 0.026 ± 0.000 0.577 ± 0.018 0.085 ± 0.002 0.601 ± 0.033 
Robbery year 365 0.023 ± 0.001 0.465 ± 0.046 0.074 ± 0.003 0.488 ± 0.032 

Robbery 6 month 
182.

5 0.002 ± 0.001 0.355 ± 0.050 0.060 ± 0.005 0.380 ± 0.037 
Robbery 3 month 91.3 0.015 ± 0.001 0.240 ± 0.048 0.044 ± 0.004 0.279 ± 0.037 
Robbery month 30.4 0.008 ± 0.001 0.117 ± 0.042 0.025 ± 0.004 0.171 ± 0.039 
Robbery week 7.0 0.003 ± 0.001 0.043 ± 0.032 0.007 ± 0.002 0.063 ± 0.028 
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Table 4. Yearly hotspots of variable sizes in Chicago 2008-2015. Average fraction of hotspots each year required to 

capture 25% and 50% of total crime along with the average fraction of hotspots that overlap year over year. 

Crime 
Type 

Area Fraction 
(25%) 

Overlap 
(25%) 

Area Fraction 
(50%) 

Overlap 
(50%) 

Location Scale 
(km) 

Assault 0.030 ± 0.001 0.478 ± 0.020 0.089 ± 0.003 0.55 0± 0.017 0.2 
Assault 0.048 ± 0.001 0.578 ± 0.024 0.132 ± 0.001 0.709 ± 0.016 0.4 
Assault 0.065 ± 0.001 0.768 ± 0.035 0.171 ± 0.002 0.838 ± 0.017 0.8 
Burglary 0.038 ± 0.004 0.338 ± 0.040 0.110 ± 0.009 0.437 ± 0.048 0.2 
Burglary 0.056 ± 0.003 0.510 ± 0.032 0.157 ± 0.005 0.598 ± 0.046 0.4 
Burglary 0.071 ± 0.002 0.648 ± 0.030 0.193 ± 0.002 0.738 ± 0.034 0.8 
MVT 0.042 ± 0.003 0.246 ± 0.035 0.114 ± 0.008 0.370 ± 0.043 0.2 
MVT 0.066 ± 0.002 0.407 ± 0.040 0.170 ± 0.004 0.576 ± 0.047 0.4 
MVT 0.085 ± 0.002 0.549 ± 0.053 0.212 ± 0.003 0.722 ± 0.037 0.8 
Robbery 0.023 ± 0.001 0.465 ± 0.046 0.074 ± 0.003 0.488 ± 0.032 0.2 
Robbery 0.039 ± 0.001 0.572 ± 0.041 0.113 ± 0.002 0.667 ± 0.027 0.4 
Robbery 0.057 ± 0.001 0.664 ± 0.054 0.150 ± 0.002 0.783 ± 0.021 0.8 

 

 

Table 5. Observed and expected average size of the largest cluster for 200 x 200m hotspots given different time 

windows in Los Angeles. 

Days 
  

Assault Burglary MVT Robbery 

Observed Expected Observed Expected Observed Expected Observed Expected 

7 1.3 2.9 2.3 3.4 2.4 3.6 2.0 3.9 
30.4 2.9 5.0 4.8 6.1 5.3 6.5 4.9 6.5 
91.25 6.7 7.1 8.3 8.2 8.0 8.9 10.6 8.4 
182.5 11.5 8.5 11.1 9.9 11.9 10.9 15.7 7.7 
365 19.6 8.4 18.0 12.0 24.4 12.7 21.1 8.1 
2555 34 13 74 12 53 12 32 7 

 

 

Table 6. Observed and expected average size of the largest cluster for 200 x 200m hotspots given different time 

windows in Chicago. 
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Days 
  

Assault Burglary MVT Robbery 

Observed Expected Observed Expected Observed Expected Observed Expected 

7 3.3 4.4 3.7 4.7 2.9 3.9 2.9 4.1 

30.4 5.1 7.1 6.9 7.6 6.6 6.8 4.7 6.3 

91.25 9.0 9.1 15.7 10.2 10.6 9.7 8.9 9.1 

182.5 11.3 9.6 29.2 11.1 16.5 11.6 11.4 9.6 

365 16.8 10.4 41.3 11.9 22.3 13.3 14.5 10.1 

2920 28 10 121 11 76 17 19 9 
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2. Figures 

 

 

Figure 1. Percent land area needed to capture a fixed percentage of crime increases as the time window for hot 

spotting increases. A. Robberies. B. Burglaries. Results are shown for micro-geographic hotspots 200 x 200 m in 

size. 

 

 

Figure 2. The percent overlap in hot spot locations from one time period to the next increases as the hot spotting 

time window increases. A. Robbery. B. Burglary. Results are shown for micro-geographic hotspots 200 x 200 m in 

size.  
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Figure 3. The percent overlap in hot spot locations from one time period to the next increases in tandem with the 

percent land area needed to capture a fixed percentage of crime. A. Robbery. B. Burglary. Results are shown for 

micro-geographic hotspots 200 x 200 m in size.  
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Figure 4. Larger hot spotting spatial scales require greater total land area to capture the same amount of crime, but 

also produce greater overlap in hot spot locations from one time period to the next. A. Robbery. B. Burglary. Results 

are shown for 200m, 400m and 800m cells at 1 week, 1 month, 3 months, 6 months, and 1 time windows. 

0%

20%

40%

60%

0% 1% 2% 3% 4% 5% 6% 7%

%
 o

ve
rl

ap
 p

er
 ti

m
e 

w
in

do
w

% land area to capture 25% of crime

0%

20%

40%

60%

80%

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

%
 o

ve
rl

ap
 p

er
 ti

m
e 

w
in

do
w

% land area to capture 25% of crime

Los Angeles Robbery Los Angeles Burglary

200 m

400 m

800 m

200 m

400 m

800 m

1 week

1 month

6  months

1 year

3 months

A B

1 week

1 month

6  months

1 year

3 months



 35 

 

Figure 5. The percent overlap in hot spot locations from one time period to the next increases in tandem with the 

percent land area needed to capture 25% of crime. A. Robbery and burglary hotspots at a 200 x 200 m spatial scale. 

B. Robbery and burglary at an 800 x 800 m spatial scale. Results are shown for 1 week, 1 month, 3 months, 6 

months, 1 year and 2-year time windows. 

 

 

Figure 6. Law-like behavior in the concentration-dynamics tradeoff. Shown is the value of the scaling constant K 

against the hot spotting time window. A. Los Angeles crime types. B. Chicago crime types. 
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