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MODELING AND ESTIMATION OF MULTI-SOURCE CLUSTERING
IN CRIME AND SECURITY DATA1

BY GEORGE MOHLER

Santa Clara University

While the presence of clustering in crime and security event data is well
established, the mechanism(s) by which clustering arises is not fully under-
stood. Both contagion models and history independent correlation models are
applied, but not simultaneously. In an attempt to disentangle contagion from
other types of correlation, we consider a Hawkes process with background
rate driven by a log Gaussian Cox process. Our inference methodology is an
efficient Metropolis adjusted Langevin algorithm for filtering of the intensity
and estimation of the model parameters. We apply the methodology to prop-
erty and violent crime data from Chicago, terrorist attack data from Northern
Ireland and Israel, and civilian casualty data from Iraq. For each data set we
quantify the uncertainty in the levels of contagion vs. history independent
correlation.

1. Introduction. Self-exciting point processes have gained attention in recent
years for the purpose of modeling criminal activity, in particular, property crime
and gang violence [Egesdal et al. (2010), Hegemann, Lewis and Bertozzi (2012),
Mohler et al. (2011), Short et al. (2009, 2010), Stomakhin, Short and Bertozzi
(2011)], and, more recently, terrorism and other event patterns in extreme security
settings [Lewis et al. (2012), Porter and White (2012)]. The defining character-
istic of these models is that the occurrence of an event increases the likelihood
of more events, as the offender(s) may attempt to replicate a previous success in
the same or a nearby location in the following days or weeks [Bowers, Johnson
and Pease (2004), Short et al. (2009), Townsley, Johnson and Ratcliffe (2008)].
In Short et al. (2009), a simple procedure is introduced to detect self-excitation in
event data, where the distribution of inter-event times ti − tj for all i > j is com-
pared to the theoretical distribution corresponding to a stationary Poisson process.
For example, we plot in Figure 1 a histogram of the inter-event times ti − tj (i > j )
for civilian casualties per week in Fallujah between March 20, 2003 and Decem-
ber 31, 2007 provided by Iraq Body Count (IBC). The histogram is an estimate
of the unnormalized density of inter-event times and is similar to the K-function
estimator in Møller and Waagepetersen (2003) [for a uniform distribution on an
interval the function decreases linearly, see Short et al. (2009) for further details].
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FIG. 1. Left: Civilian fatalities per week in Fallujah. Right: Distribution of inter-event times.

The presence of more event pairs at shorter inter-event times compared to random
chance provides some evidence that self-excitation may play a role in the occur-
rence of fatal attacks in Fallujah.

However, other second order point processes are capable of producing clustered
inter-event times as depicted in Figure 1. In particular, auto regressive and Cox
processes have also been employed as potential models for crime and security
related event clustering [Taddy (2010), Zammit-Mangion et al. (2012)]. In these
models events are correlated through the intensity of the process, which follows a
random trajectory. Whereas for a self-exciting point process the intensity will stay
high for a period of time following an event, for a Cox process the intensity may
quickly decrease following an event due to random fluctuations. From a social
perspective, events may be correlated due to exogenous factors like the state of
the economy, month of the year, change in military operations, etc., rather than
“caused” by endogenous factors such as repeat offender behavior.

We propose a model along with an efficient inference methodology for quanti-
fying uncertainty in the levels of contagion vs. history independent correlation in
crime and security data sets. The model consists of a discrete time Hawkes pro-
cess with background rate determined by a log Gaussian Cox process (LGCP).
The Gaussian process is given by the forward Euler discretization of a mean re-
verting Ornstein–Uhlenbeck stochastic differential equation. Details of the model
are provided in Section 2. For filtering of the intensity and estimation of the model
parameters, we consider an extension of the Metropolis adjusted Langevin algo-
rithm (MALA) for LGCPs to the case of self-excitation. By exploiting properties
of the covariance matrix of the model in Section 2, MALA can be implemented
such that the cost of each metropolis iteration scales linearly with the size of the
data. Details of the inference methodology are provided in Section 3. In Section 4
we validate the methodology on synthetic data and then apply it to several open
source crime and security data sets: property and violent crime in Chicago, terror-
ist attacks in Northern Ireland and Israel, and civilian casualties in Fallujah, Iraq.
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We confirm previous work suggesting that contagion plays a role in crime event
clustering, though our results indicate that correlated fluctuations are also impor-
tant. For data sets corresponding to more extreme security settings, we observe a
wider range in the levels of contagion.

2. A Hawkes–Cox process model of crime and security. We consider a dis-
crete time model for the intensity of events where the background rate is deter-
mined by a Log Gaussian Cox process (LGCP) and the intensity is self-excited by
the occurrence of events. In particular, the intensity is given by

λi = exi + ∑
i>j

θ
(1 − b)

b
bi−j yj ,(1)

where yi is the number of events and λi is the expected number of events in the time
interval [i�t, (i + 1)�t]. The parameters θ and b control the level and timescale
of contagion effects and we use the initial conditions λ0 = eμ throughout. Here xi

is a Gaussian process with mean μ and covariance matrix �, where

�ij = σ 2a|i−j |.(2)

The model is capable of producing event clustering due to both contagion effects
and history independent correlations. For example, θ = 0 corresponds to a LGCP
and σ 2 = 0 corresponds to a discrete time version of a Hawkes process. The param-
eters a and b control the timescales over which history independent correlation and
contagion effects persist. In Figure 2 we plot two realizations of the intensity (1),
one corresponding to a LGCP without self-excitation and one corresponding to a
Hawkes process with constant background rate. We note that in both cases signif-
icant clustering is observed and it is difficult to distinguish the type of clustering
based upon visual inspection of the intensity. We will return to this example in
Section 4.

FIG. 2. Left: Cox process with parameters a = 0.9, σ 2 = 0.7 and μ = 1.8. Right: Hawkes process
with parameters μ = 0.8, b = 0.075 and θ = 0.9.
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The model given by equation (1) is related to the standard continuous time
Hawkes process,

λ(t) = ν + ∑
t>ti

k(t − ti),(3)

where λ is the intensity (rate) of events, ν is the background (Poisson) rate of
events, and k(t − ti) is a triggering kernel that determines the distribution of off-
spring events generated by events ti from the history of the process. Hawkes pro-
cesses are used to model risk increases triggered by events in the history of the
process and have been applied to repeat offender behavior in burglary [Mohler
et al. (2011)], retaliations in gang violence [Egesdal et al. (2010), Hegemann,
Lewis and Bertozzi (2012), Short et al. (2010), Stomakhin, Short and Bertozzi
(2011)] and terrorist and insurgent activity [Lewis and Mohler (2011), Porter and
White (2012)]. Continuous time Log Gaussian Cox processes are also used to
model event clustering, for example, in Brix and Diggle (2001) a mean reverting
Ornstein–Uhlenbeck SDE is used to determine the intensity of the point process.
For an exponential kernel (3) can be written as a differential equation and a contin-
uous time Hawkes–Cox process is governed by the system of stochastic differential
equations,

dxt = −ω1(xt − μ)dt + α1 dBt ,(4)

dgt = −ω2gt dt + α2ω2 dNt , k,(5)

where Bt is a standard Brownian motion and Nt is a point process with conditional
intensity

λt = ext + gt .(6)

Here the parameters ω1 and ω2 determine the timescale over which clustering due
to history independent correlations and contagion last, α1 and α2 determine the
size of intensity fluctuations, and μ determines the baseline level of event activity.

To facilitate simulation and estimation, in addition to the fact that many crime
and security data sets are binned by day or some other time unit, we restrict our
attention to discrete forward Euler approximations,

xi = xi−1 − ω1(xi−1 − μ)�t + α1
√

�tZi−1,(7)

gi = gi−1 − ω2gi−1�t + α2ω2yi−1,(8)

where Zi−1 = N (0,1) and yi−1 is the number of events occurring in [(i −
1)�t, i�t]. Letting a = (1 − ω1�t), σ 2 = α2

1�t/(1 − (1 − ω1�t)2), b = (1 −
ω2�t) and θ(1 − b) = α2ω2, the discrete model takes the form of (1).

3. Filtering and estimation using MALA. In this section we discuss general
strategies for point process estimation and then develop an inference methodology
for simultaneously filtering the latent Gaussian process xi and estimating the pa-
rameters (a, σ 2,μ, b, θ) from observations yi assumed to have been generated by
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a model of the form (1). Our goal will be to quantify the uncertainty in the level
of contagion present in an event time series, as well as to detect history indepen-
dent correlation that may also be present. In particular, we will use Markov Chain
Monte Carlo to obtain a posterior probability distribution for the intensity of the
process, the latent Gaussian process and the model parameters.

For Hawkes processes with stationary background rate, EM-type algorithms are
a popular choice and parametric and variational versions are used in seismological
and security related applications [Lewis and Mohler (2011), Marsan and Lengliné
(2008), Mohler et al. (2011), Sornette and Utkin (2009), Veen and Schoenberg
(2008)]. One issue that arises, however, is that parameter estimates suffer from
high variance when the clusters are not well separated [Lewis and Mohler (2011),
Sornette and Utkin (2009)], a common problem for the EM algorithm applied to
mixture models (the Hawkes process in equation 3 can be viewed as a mixture
model with the number of mixtures equal to the number of points in the data set).
With the introduction of a nonstationary LGCP background rate, EM estimates are
likely to have even higher variation. We will therefore take a Bayesian approach to
the estimation problem in order to quantify the uncertainty in parameter estimates.

We note that a variety of methods have been developed for the estimation of
temporal point processes, including EM algorithms [Smith and Brown (2003)],
variational alternatives [Mangion et al. (2011)], integrated nested Laplace approx-
imations [Rue, Martino and Chopin (2009)] and expectation propagation [Cseke
and Heskes (2011)]. As discussed in Brix and Diggle (2001), sequential filtering
for LGCPs suffers from large variance of the importance weights and the authors
instead use the Metropolis adjusted Langvien algorithm (MALA) for filtering the
intensity of LGCPs after estimating the parameters via a moment-based method.
Similar jump diffusion models to (4)–(5) have recently been used to model fi-
nancial contagion. In Giesecke and Schwenkler (2011), an approximate likelihood
filter is employed that avoids the need for Monte Carlo simulation, though the
computational cost of the method prevents the straightforward extension to spatial
processes. For simultaneous filtering of the intensity and estimation of parame-
ters, Langevin and Hamiltonian Monte Carlo methods on manifolds are developed
in Girolami and Calderhead (2011) capable of handling high-dimensional/spatial
problems. We take this approach as well, though we avoid the need for manifold
based Monte Carlo by exploiting an analytic expression for the inverse covariance
matrix of the process.

3.1. Metropolis adjusted Langevin algorithm. In general, given a random vec-
tor �θ with density π(�θ), the stochastic differential equation (Langevin equation),

d �θ(t) = ∇�θ log
(
π(�θ)

)
dt/2 + dB(t),(9)

has stationary distribution π(�θ). The forward Euler discretization of (9) is given
by

�θ∗ = �θn + ε2

2
∇�θ log

(
π

(�θn)) + εZn,(10)
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which no longer has the correct stationary distribution, nor satisfies detailed bal-
ance. These shortfalls are overcome through MALA by adjusting the Langevin
equation with a Metropolis acceptance condition after each Euler step. The transi-
tion density is given by

q
(�θ∗|�θn) = N

(
�θn + ε2

2
∇�θ log

(
π

(�θn))
, ε2I

)
(11)

and the acceptance probability is

min
{

1,
q(�θn|�θ∗)π(�θ∗)
q(�θ∗|�θn)π(�θn)

}
.(12)

The posterior density for the discrete Hawkes–Cox process is given by

π
(�x, a, σ 2,μ, b, θ |�y)

∝
(

N∏
i=1

exp{−λi}λyi

i

)
|�|−1/2 exp

{−(�x − μ1)T �−1(�x − μ1)/2
}

(13)

× p
(
a,σ 2,μ, b, θ

)
,

where p(a,σ 2,μ, b, θ) is the prior distribution of the model parameters. The
derivatives of the posterior density are given by

∇�x log(π) = �v − �−1(�x − μ1),(14)

where vi = yi exp{xi}/λi − exp{xi},
∇a log(π) = −0.5

d log(|�|)
da

+ 0.5(�x − μ1)T �−1 d�

da
�−1(�x − μ1)

(15)

+ d log(p)

da
,

∇σ 2 log(π) = −0.5
d log(|�|)

dσ 2 + 0.5(�x − μ1)T �−1 d�

dσ 2 �−1(�x − μ1)

(16)

+ d log(p)

dσ 2 ,

∇μ log(π) =
N∑

i=1

(
�−1(�x − μ1)

)
i + d log(p)

dμ
,(17)

∇b log(π) =
N∑

i=1

(yi/λi − 1)
dλi

db
+ d log(p)

db
(18)

and

∇θ log(π) =
N∑

i=1

(yi/λi − 1)
dλi

dθ
+ d log(p)

dθ
.(19)
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In general, each Metropolis proposal is associated with O(N3) operations, as
the inverse covariance matrix and the determinant are required. However, these can
be determined analytically for our covariance matrix [Shaman (1969)]:

�−1 = 1

σ 2(1 − a2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −a 0 · · · 0
−a 1 + a2 −a · · · 0

0
. . .

. . .
. . . 0

... −a 1 + a2 −a

0 · · · 0 −a 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(20)

and

|�| = σ 2N (
1 − a2)N−1

.(21)

Because �−1 is tridiagonal, (13) and (14) require O(N) operations to evaluate.
Furthermore, the derivatives on the right side of (15) and (16) can be computed
directly from (13), (20) and (21). The recursive relationship,

λi − exi = b
(
λi−1 − exi−1

) + θ(1 − b)yi−1,(22)

can be used to compute λi ,
dλi

db
and dλi

dθ
efficiently in O(N) operations.

4. Results. In this section we validate the inference methodology of Section 3
on synthetic data generated by the discrete Hawkes–Cox process model introduced
in Section 2. We then apply the methodology to several open source crime and
terrorism data sets to estimate the levels of contagion and history independent
correlation present in the data.

For all examples we use the following MCMC iteration procedure. At each
iteration we alternately sample first the latent variable, �x, using equations (11)–
(12) with Langevin step size ε = 0.1, second the variables a, σ 2 and μ with step
size ε = 0.01, and third the parameters b and θ with step size ε = 0.01. We note
that the second and third steps are independent, as the parameters are only coupled
through their dependence on �x. We use U [0,1] priors for the parameters a, b and θ ,
and N (0,5) priors for μ and σ 2 (σ 2 restricted to be positive). 5 · 105 Monte Carlo
iterations are used in each example with a burn-in of 2.5 · 105. Trace plots of the
posterior distribution are inspected to verify convergence.

4.1. Example 1: Two sources of correlation. We first validate the inference
methodology for a discrete Hawkes–Cox process with N = 500 time steps and
parameters a = 0.65, σ 2 = 1, μ = 2, b = 0.35, and θ = 0.5. Convergence to the
stationary distribution is reached in less than 105 MCMC iterations, as illustrated
by the trace plots of the posterior parameter distributions shown in Figure 3. For an
arbitrary covariance matrix the cost of one Monte Carlo step would be O(5003),
but due to the linear dependence on the size of the data, we were able to take
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FIG. 3. Left: First 200 time units of the simulated intensity (black) along with the filtered intensity
(posterior mean in red, 95% range in grey) with N = 500, a = 0.65, σ 2 = 1, μ = 2, b = 0.35, and
θ = 0.5. Right: Trace plots of the posterior parameter distributions.

5 · 105 Monte Carlo steps implemented in Matlab with a 1.8 GHz dual-core Intel
i7 processor in less than 2 hours.

We confirm the accuracy of the methodology by plotting the filtered intensity
(posterior mean) against the true intensity of the simulated Hawkes–Cox process
(first 200 time units for visualization) in Figure 3. The shaded region indicates the
95% range of the posterior intensity. In Figure 4 we plot the posterior distribution
of the five model parameters along with the true parameters (indicated by a red
vertical line) used in the simulation. The relative error between the true parameter
value and the posterior mean is less than 14% for all parameters. We note that for a
particular realization of the point process the posterior distribution for the estimate
of μ appears biased, however, for different realizations of the intensity the estimate
may over- or underestimate μ.

4.2. Example 2: Contagion vs. history independent correlation. We return to
the example plotted in Figure 2 in order to assess whether the Langevin Monte
Carlo method can distinguish between a Hawkes process and a Cox process.

For the Cox process we use the parameters a = 0.9, σ 2 = 0.7 and μ = 1.8
(θ = 0) with N = 200. The Hawkes portion of the intensity λ − ex thus equals
zero in equation (1). In Figure 5 (left) we plot the true intensity of the simulated
Cox process (black) along with the filtered intensity (posterior mean in red) and
the filtered Hawkes portion of the intensity (posterior mean in blue). We note that
the Hawkes portion of the estimated intensity remains close to zero throughout the
time interval, though for periods of high event activity it accounts for up to 1/6 of
the overall rate of events. Thus, one needs to be cautious in interpreting results for
similar levels of contagion inferred from crime and security data sets.

For the Hawkes process with constant background rate we use the parameters
μ = 0.8, b = 0.075 and θ = 0.9 (σ = 0) with N = 200. In Figure 5 (right) we
plot the true intensity λ (black) and background rate ex (dashed black) against the
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FIG. 4. Histograms of the sampled posterior parameter distributions (250,000 samples) corre-
sponding to a simulated point process with parameters a = 0.65, σ 2 = 1, μ = 2, b = 0.35, and
θ = 0.5. The posterior mean and standard deviation are displayed in the top right of each figure and
the red line indicates the true value of the parameter used to simulate the intensity. The lower right
posterior distribution for the parameter μ corresponds to a different realization of the point process.

filtered intensity (posterior mean in red) and Cox contribution to the estimated in-
tensity (blue dots). We note that the filtered background rate exhibits low variation
and provides a good approximation to the actual background rate, exp(0.8).

FIG. 5. Left: Simulated intensity (black) of a Cox process with parameters a = 0.9, σ 2 = 0.7 and
μ = 1.8 along with the filtered intensity (posterior mean in red, 95% range in grey, and estimated
Hawkes portion of the intensity in blue). Right: Simulated intensity (black) of a Hawkes process with
parameters μ = 0.8, b = 0.075 and θ = 0.9 along with the filtered intensity (posterior mean in red,
95% range in grey, and estimated Cox portion of the intensity in blue).
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FIG. 6. Property crime in Chicago. Left: Filtered intensity λ (posterior mean in red, 95% range in
grey) and Hawkes rate λ − ex (posterior mean in blue). Right: Normalized cumulative distribution
of rescaled event times along with 95% error bounds of the Kolmogorov–Smirnov statistic.

4.3. Application to crime and security data. Next we apply the inference
methodology to several open source crime and security data sets to assess the
sources of clustering. The first data set is the counts per week of property crime
(burglary and motor vehicle theft) and violent crime (battery, assault and robbery)
occurring in Beat 423 in Chicago between January 1, 2001 and June 15, 2012. The
data is available through the Chicago data portal at https://data.cityofchicago.org/
Public-Safety/Crimes-2001-to-present/ijzp-q8t2. The terrorism data sets we use
include the counts per week of attacks in Israel (2001–2010) and Northern Ire-
land (1970–1993). The data is available through the Global Terrorism Database at
http://www.start.umd.edu/gtd/. The civilian casualty data from Fallujah described
in Section 1 can be obtained through the IBC at http://www.iraqbodycount.org/
database/.

In Figure 6 we plot the filtered intensity for property crime in Chicago and
in Figure 7 we plot the filtered intensity for violent crime. In order to assess the
goodness of fit of the model, we use residual analysis [Ogata (1988)]; the rescaled
event times

τi =
∫ ti

0
λ(t) dt(23)

are distributed according to a unit rate Poisson process if the model is correctly
specified. On the right of Figures 6 and 7 we plot the normalized cumulative num-
ber of events N(τ) − τ against the rescaled event times τ .

For property crime 45% of the events are attributed to the background rate ex

and the other 55% are attributed to the Hawkes component (see Table 1). The
posterior standard deviation for the percentage of events assigned to the Hawkes
intensity in 7%, thus indicating with a high degree of certainty that both types of
correlation are playing a significant role in intensity fluctuations. The time scale

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
http://www.start.umd.edu/gtd/
http://www.iraqbodycount.org/database/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
http://www.iraqbodycount.org/database/
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FIG. 7. Violent crime in Chicago. Left: Filtered intensity λ (posterior mean in red, 95% range in
grey) and Hawkes rate λi − exi+c·i (posterior mean in blue). Right: Normalized cumulative distri-
bution of rescaled event times along with 95% error bounds of the Kolmogorov–Smirnov statistic.

parameter ω−1
1 of mean reversion of the Cox process is estimated to be 1.7 weeks

and for the Hawkes triggering kernel the time scale ω−1
2 is estimated to be 4.8

weeks. A number of exogenous factors fluctuating on a weekly basis could be
causing the correlated fluctuations, such as weather or routine activities linked to
work and pay schedules. The several week duration of self-excitation is consis-
tent with previous estimates for property crime. We also note that the normalized
cumulative distribution of rescaled event times stays well within the 95% error
bounds of the Kolmogorov–Smirnov statistic.

The Chicago violent crime data and the Northern Ireland terrorist attack data
both exhibit significant slow timescale trends over the observation window. To ac-
count for this in the model, we multiply the background rate exi by an exponential
factor ec·i and estimate c along with the other model parameters using MALA.
For violent crime we observe similar levels of contagion and correlation, as well
as similar timescales to the property crime time series. With the addition of the
exponential factor in the model, N(τ)− τ stays well within the 95% error bounds.

TABLE 1
Posterior mean and standard deviation of the percentage of events attributed to the Hawkes

component of the estimated intensity (top row) and posterior mean of the timescales ω−1
1 and ω−1

2
in weeks associated with the Cox and Hawkes processes, respectively (bottom two rows)

Prop. Viol. N. Ireland Israel Fallujah

% Hawkes 55 (7) 52 (7) 50 (5) 12 (7) 23 (13)
Timescale Cox 1.7 1.5 1.7 2.8 36.0
Timescale Hawkes 4.8 3.9 9.3 5.7 4.9
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FIG. 8. Terrorist attacks in Northern Ireland. Left: Filtered intensity λ (posterior mean in red, 95%
range in grey) and Hawkes rate λi − exi+c·i (posterior mean in blue). Right: Normalized cumula-
tive distribution of rescaled event times along with 95% error bounds of the Kolmogorov–Smirnov
statistic.

In Figure 8 we plot the filtered intensity for terrorist attacks in Northern Ireland.
The estimated dynamics of the process have similarities to the Chicago crime data
set, as the percentage of events attributed to contagion is 50%±5%. The timescale
over which the estimated self-excitation lasts, 9.3 weeks, is the longest out of all
of the data sets explored here. In contrast, we plot the corresponding intensities
for terrorist attacks in Israel in Figure 9 and for civilian casualties in Figure 10. In
Israel, we observe very little contagion effects, similar to those in Figure 5. The
timescale associated with history independent correlation in Iraq is the slowest out
of all 5 data sets, at 36 weeks. This is likely due to exogenous factors such as
troop surges playing a large role in intensity fluctuations. However, a significant

FIG. 9. Terrorist attacks in Israel. Left: Filtered intensity λ (posterior mean in red, 95% range in
grey) and Hawkes rate λ − ex (posterior mean in blue). Right: Normalized cumulative distribution
of rescaled event times along with 95% error bounds of the Kolmogorov–Smirnov statistic.
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FIG. 10. Civilian casualties in Fallujah. Left: Filtered intensity λ (posterior mean in red, 95%
range in grey) and Hawkes rate λ − ex (posterior mean in blue). Right: Normalized cumulative dis-
tribution of rescaled event times along with 95% error bounds of the Kolmogorov–Smirnov statistic.

proportion of clustering is attributed to contagion effects, verifying previous work
in Lewis et al. (2012). The differences across these three extreme security settings
may be due to a variety of factors, such as the security measures employed by the
government in power, the organization and tactics of the opposition, the local ge-
ography, etc. Trying to determine theses underlying factors could be an important
line of future research.

5. Discussion. We developed a model and inference methodology to assess
the levels of contagion and correlation in crime and security data. We connected
Hawkes process and Cox process type models that are typically used indepen-
dently to explain clustering in crime and security data sets. The high-dimensional
nature of the problem, filtering the latent vector �x, was overcome by using a model
with a sparse covariance matrix and a Hawkes component that can be written as a
differential equation.

Determining whether contagion effects are present in security related time series
is a problem of practical importance. The effectiveness of policing strategies such
as cops on the dots, where police react to recent crimes [Jones, Brantingham and
Chayes (2010)], depends on how the crime event history influences future crime
rates. Accurate assessment of the timescale associated with contagion effects may
tell police how long they need to put additional patrols in a neighborhood. If ex-
ogenous effects are also causing crime rate fluctuations, these effects need to be
taken into account if parameter estimates are to be accurate. Similar considerations
may be relevant to military strategies in extreme security settings.

For these types of applications, spatial-temporal processes are needed and we
believe our methodology should extend to this setting. In Girolami and Calderhead
(2011), the authors illustrate the feasibility of Hamiltonian and Langevin Monte
Carlo in high-dimensional settings, in particular, for a 2D LGCP. To add time and
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self-excitation, several approaches could be used to model the Cox process: choos-
ing a model with sparse inverse covariance matrix, modeling the inverse covariance
matrix explicitly, using a sparse approximation, or via a nonparametric sparse es-
timator, such as l1 penalization. Spatial extensions will be the focus of subsequent
research.

REFERENCES

BOWERS, K. J., JOHNSON, S. D. and PEASE, K. (2004). Prospective hot-spotting the future of
crime mapping? British Journal of Criminology 44 641–658.

BRIX, A. and DIGGLE, P. J. (2001). Spatiotemporal prediction for log-Gaussian Cox processes. J. R.
Stat. Soc. Ser. B Stat. Methodol. 63 823–841. MR1872069

CSEKE, B. and HESKES, T. (2011). Approximate marginals in latent Gaussian models. J. Mach.
Learn. Res. 12 417–454. MR2783173

EGESDAL, M., FATHAUER, C., LOUIE, K. and NEUMAN, J. (2010). Statistical and Stochastic Mod-
eling of Gang Rivalries in Los Angeles. SIAM Undergraduate Research Online 3 72–94.

GIESECKE, K. and SCHWENKLER, G. (2011). Filtered likelihood for point processes. Available at
SSRN 1898344.

GIROLAMI, M. and CALDERHEAD, B. (2011). Riemann manifold Langevin and Hamiltonian Monte
Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 123–214. MR2814492

HEGEMANN, R., LEWIS, E. and BERTOZZI, A. (2012). An “Estimate & Score Algorithm” for
simultaneous parameter estimation and reconstruction of missing data on social networks. Un-
published manuscript.

JONES, P. A., BRANTINGHAM, P. J. and CHAYES, L. (2010). Statistical models of criminal be-
havior: The effects of law enforcement actions. Mathematical Models and Methods in Applied
Sciences 20 1397–1423.

LEWIS, E. and MOHLER, G. (2011). A nonparametric EM algorithm for multiscale Hawkes pro-
cesses. Unpublished manuscript.

LEWIS, E., MOHLER, G., BRANTINGHAM, P. J. and BERTOZZI, A. L. (2012). Self-exciting point
process models of civilian deaths in Iraq. Security Journal 25 244–264.

MANGION, A. Z., YUAN, K., KADIRKAMANATHAN, V., NIRANJAN, M. and SANGUINETTI, G.
(2011). Online variational inference for state-space models with point-process observations. Neu-
ral Comput. 23 1967–1999. MR2839905

MARSAN, D. and LENGLINÉ, O. (2008). Extending earthquakes’ reach through cascading. Science
319 1076–1079.

MOHLER, G. O., SHORT, M. B., BRANTINGHAM, P. J., SCHOENBERG, F. P. and TITA, G. E.
(2011). Self-exciting point process modeling of crime. J. Amer. Statist. Assoc. 106 100–108.
MR2816705

MØLLER, J. and WAAGEPETERSEN, R. P. (2003). Statistical Inference and Simulation for Spatial
Point Processes 100. Chapman & Hall/CRC, Boca Raton, FL. MR2004226

OGATA, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point
processes. J. Amer. Statist. Assoc. 83 9–27.

PORTER, M. D. and WHITE, G. (2012). Self-exciting hurdle models for terrorist activity. Ann. Appl.
Stat. 6 106–124. MR2951531

RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate Bayesian inference for latent Gaus-
sian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat.
Methodol. 71 319–392. MR2649602

SHAMAN, P. (1969). On the inverse of the covariance matrix of a first order moving average.
Biometrika 56 595–600. MR0255001

http://www.ams.org/mathscinet-getitem?mr=1872069
http://www.ams.org/mathscinet-getitem?mr=2783173
http://www.ams.org/mathscinet-getitem?mr=2814492
http://www.ams.org/mathscinet-getitem?mr=2839905
http://www.ams.org/mathscinet-getitem?mr=2816705
http://www.ams.org/mathscinet-getitem?mr=2004226
http://www.ams.org/mathscinet-getitem?mr=2951531
http://www.ams.org/mathscinet-getitem?mr=2649602
http://www.ams.org/mathscinet-getitem?mr=0255001


MULTI-SOURCE CLUSTERING IN CRIME AND SECURITY 1539

SHORT, M. B., D’ORSOGNA, M. R., BRANTINGHAM, P. J. and TITA, G. E. (2009). Measuring
and modeling repeat and near-repeat burglary effects. Journal of Quantitative Criminology 25
325–339.

SHORT, M., MOHLER, G., BRANTINGHAM, P. and TITA, G. (2010). Gang rivalry dynamics via
coupled point process networks. Unpublished manuscript.

SMITH, A. C. and BROWN, E. N. (2003). Estimating a state-space model from point process obser-
vations. Neural Comput. 15 965–991.

SORNETTE, D. and UTKIN, S. (2009). Limits of declustering methods for disentangling exoge-
nous from endogenous events in time series with foreshocks, main shocks, and aftershocks. Phys.
Rev. E (3) 79 061110, 15. MR2551269

STOMAKHIN, A., SHORT, M. B. and BERTOZZI, A. L. (2011). Reconstruction of missing data
in social networks based on temporal patterns of interactions. Inverse Problems 27 115013, 15.
MR2851919

TADDY, M. A. (2010). Autoregressive mixture models for dynamic spatial Poisson processes: Appli-
cation to tracking intensity of violent crime. J. Amer. Statist. Assoc. 105 1403–1417. MR2796559

TOWNSLEY, M., JOHNSON, S. D. and RATCLIFFE, J. H. (2008). Space time dynamics of insurgent
activity in Iraq. Security Journal 21 139–146.

VEEN, A. and SCHOENBERG, F. P. (2008). Estimation of space–time branching process models in
seismology using an EM-type algorithm. J. Amer. Statist. Assoc. 103 614–624. MR2523998

ZAMMIT-MANGION, A., DEWAR, M., KADIRKAMANATHAN, V. and SANGUINETTI, G. (2012).
Point process modelling of the Afghan War Diary. Proc. Natl. Acad. Sci. USA 109 12414–12419.

DEPARTMENT OF MATHEMATICS

AND COMPUTER SCIENCE

SANTA CLARA UNIVERSITY

713 HARDING AVE

SAN JOSE, CALIFORNIA 95126
USA
E-MAIL: gmohler@scu.edu

http://www.ams.org/mathscinet-getitem?mr=2551269
http://www.ams.org/mathscinet-getitem?mr=2851919
http://www.ams.org/mathscinet-getitem?mr=2796559
http://www.ams.org/mathscinet-getitem?mr=2523998
mailto:gmohler@scu.edu

	Introduction
	A Hawkes-Cox process model of crime and security
	Filtering and estimation using MALA
	Metropolis adjusted Langevin algorithm

	Results
	Example 1: Two sources of correlation
	Example 2: Contagion vs. history independent correlation
	Application to crime and security data

	Discussion
	References
	Author's Addresses

