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Abstract

We introduce an API for forecasting the intensity of space-
time events in urban environments and spatially allocating
vehicles during times of peak demand to minimize response
time. Our service is applicable to dynamic resource allocation
problems that arise in ride sharing, mobile delivery, emer-
gency vehicle placement, etc. We illustrate the service us-
ing medical emergency data from Indianapolis and show that
the system can predict future medical emergencies and allo-
cate ambulances such that response time is significantly de-
creased. The software is available for public use by app devel-
opers with a need for vehicle allocation over spatial-temporal
data in real-time.

Introduction
Software applications that deal with urban logistics must
solve the coupled problem of i) estimating a space-time in-
tensity of events (demand) and ii) allocating vehicles to the
dynamic intensity to match demand and minimize response
time. Hawkes processes have recently become a popular
model for solving i), however scalable Hawkes process soft-
ware is lacking that can be easily integrated in mobile and
web apps (see (Reinhart 2017) for a review of the space-time
Hawkes process literature). We introduce a software appli-
cation that allows for scalable training and prediction of spa-
tial Hawkes processes using online gradient descent to solve
i). Secondly, Wasserstein barycenters have recently been in-
troduced for minimizing the earth mover’s distance between
probability densities (Cuturi and Doucet 2014). We incorpo-
rate fast Wasserstein barycenters computation into the API
service for solving the optimal vehicle allocation problem.
Both the Hawkes process and Wasserstein barycenters are
implemented as a model service accessible via GET and
POST requests. We illustrate the service using Indianapolis
medical emergency data, showing that the average distance
to demand can be reduced from 1.95 to 1.27 miles.

System and Methods
Figure 1 shows our system. Our modeling and clustering
methods are accessible through modular API calls (code
available at (Hosler and Saper 2018)):
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• A GET request sends query parameters and receives the
desired intensity data. A start time parameter initiates
when to begin predictions and an interval count parameter
determines the amount of predictions to make (at specifi-
able intervals into the future).

• A POST request returns optimal vehicle placements. The
request specifies current vehicle locations in latitude and
longitude coordinates and whether that vehicle can be
moved for optimization. An interval count and start time
parameter determine what Hawkes intensities to use for
clustering.

• A GET request for posting new events for online model
training or CSV upload for batch model updates.

Figure 1: System diagram of our API service.

The Hawkes process method consists of non-parametric
estimation of a background intensity capturing time of day
and day of week trends in addition to spatial heterogene-
ity. We use a non-parametric model for the triggering kernel
to capture contagion in events. In particular we use an ex-
ponential basis for the Hawkes kernel that facilitates fully
online gradient descent training (Mohler and Brantingham
2018).

To allocate vehicles, we utilize a fast computational ap-
proach (Cuturi and Doucet 2014) to minimize Wasserstein
distance to the Hawkes process intensity. Each vehicle is
represented as a delta function density and the density loca-
tion is optimized to minimize earth mover’s distance to the
Hawkes process. Wasserstein barycenters yield clusters with



similar demand levels, in contrast to k-means where each ve-
hicle location (centroid) may have a different demand vol-
ume to serve.

Demonstration
In this section we illustrate the capabilities of our service us-
ing data provided by Indianapolis Emergency Medical Ser-
vices (EMS).

Figure 2: Example intensity projection and ambulance allo-
cation in Indianapolis over a representative 4 hour period.

The Predictive Accuracy Index (PAI) (Mohler and Brant-
ingham 2018) measures the percentage of incidents captured
in the top k grid cells flagged as areas of peak activity. The
PAI is area normalized so that a value of 1 corresponds to
random predictions. 50 test projections each over periods of
1, 2, and 4 hours yielded an average predictive accuracy in-
dex of 17.1 when compared with corresponding historical
data. These results are shown in Figure 3.

Figure 3: PAI for 50 simulations over 1, 2, and 4 hours.

Peak event time prediction is an important application in
ambulance allocation as cities have flex trucks that can be
dynamically positioned, but these trucks are parked at sta-
tions during low volume hours (for driver considerations).
Figure 4 shows 2 weeks of projections and the correspond-
ing historical data examining the total number of events that
occurred in 2 hour periods. We defined peak event activity as
a period during which the number of events fell in the 80th
percentile or higher. We were able to predict these periods
with an AUC of 0.721.

To test optimal ambulance placement, we ran 3 simula-
tions allocating 50 ambulances: not moved from the EMS

Figure 4: Total number of events in all grid cells in 2 hour
windows over a 2 week period.

stations (2 ambulances per station), clustered by Kmeans,
clustered by Wasserstein barycenters. Each simulation tested
the response distance to 50 real emergencies that took place
during the predicted period. Every 10 emergencies, the am-
bulances were reallocated. The average driving distances
were 1.946 mi with no ambulance allocation, 1.400 mi with
Kmeans and 1.268 mi with Wasserstein barycenters. The full
results of this simulation are shown in Figure 5.

Figure 5: Driving distance to 50 real events.

Our API is extensible to a wide variety of spacial-
temporal data. The trend modeling and point process based
clustering enable development of applications far superior
to manually allocating resources on a heat map, the solution
to which many government organizations still resort. Based
on our work with Indianapolis EMS data, we have demon-
strated the efficacy of our service and we believe it can ex-
tend beyond EMS applications in Indianapolis.
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