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Abstract— A retweet refers to sharing a tweet posted
by another user on Twitter and is a primary way informa-
tion spreads on the Twitter network. Political parties use
Twitter extensively as a part of their campaign to promote
their presence, announce their propaganda, and at times
debating with opponents. In this work we consider the
problem of early prediction of the final retweet count
using information from the network during the first
several minutes after a post is made. Such predictions
are useful for ranking and promoting posts and also
can be used in combination with fake news detection.
From a machine learning perspective, the task can be
viewed as a regression problem. We introduce a novel
graph convolution neural network for forecasting retweet
count that combines network level features through
graph convolution layers as well as tweet level features
at a higher dense layer in the network. We first will
provide an overview of the graph convolution network
architecture and then perform several experiments on
Twitter data collected during presidential elections in
South Africa (2014) and Kenya (2013). We show that
the model outperforms baseline models including a feed-
forward neural network and the popular point process
based model SEISMIC.

Index Terms— Graph Convolution Neural Network,
Hawkes Process, Twitter, Election

I. INTRODUCTION

Social media (Twitter, Facebook, etc.) is playing
an increasingly important role in elections around
the world [1] driven in part by the fact that
many people receive their news from social media.
Recent research has shown that fake news can
dominate the truth online [2] and in the U.S. 2016
election new research indicates that fake news may
have contributed to Donald Trump’s victory [3].
Machine learning methods have been introduced
for the purpose of fake news mitigation on so-
cial media [4], however the effectiveness of such
methods will rely on how well emerging Twitter

cascades can be ranked for virality to prioritize
interventions.

In this research work we focus on the follow-
ing problem. Given an observation of the first
several minutes of a political retweet sequence
cascade during a pre-election period, predict the
final retweet count (or the count after some final
time) of the cascade. For example, in the 2014
South African election there were 466 retweets for
the tweet sequence contained in Figure 1 posted
by a verified user who is a radio jockey and phi-
lanthropist in South Africa. Each point in Figure
1 represents a retweet. The retweet cascade has
accumulated 23 retweets (marked in red color) in
the first ten minutes and an additional 22 retweets
(marked in blue color) in the second ten minutes.
We wish to construct a predictive model that takes
into account features corresponding to these 45
retweets, and the actors who retweeted them, and
estimates the final number of retweets marked in
cyan color.

Forecasting the final retweet count given an ini-
tial cascade is the focus of several recent research
studies. These studies have taken into account the
role and behavior of actors [5], [6], predictive
features from the images attached to the tweets
[7], network properties [8], and the relationship be-
tween the author’s profile and success of the tweet
[9]. Some researchers [10], [11], [12], [11] have
treated the problem from a classification point of
view by classifying if the post is going to be viral
or assigning the post to categories of popularity.
In [13], the factors motivating users to retweet are
investigated. Statistical models [14], [15], [16] that
do not require feature engineering and can system-
atically take into account how cascades propagate
on networks have been constructed using point



Fig. 1. (Left) A sample tweet from the 2014 South Africa Election. (Right) Resulting retweet Cascade.

process models and survival theory.
In this paper we propose a novel method for

retweet prediction during elections that draws upon
the advantages of both the machine learning re-
gression framework, that allows for election related
features to be crafted, and models such as point
processes that are good at incorporating network
and diffusion effects. In particular, we introduce
a deep learning framework where we use graph
convolution layers [17], [18] that can learn non-
linear diffusion features from the social network
coupled with a dense layer containing tweet level,
election specific features that is introduced at a
higher level of the neural network. In Section II we
discuss the architecture of our neural network. In
Section III we provide an overview of the election
related features we use in the model. In Section IV
we give results for several experiments conducted
on Twitter data from the 2013 Kenya election
and 2014 South Africa election. We show that
the graph convolution neural network outperforms
SEISMIC and other baseline models in terms of
ranking populars retweet sequences by up to 15%.

II. GRAPH CONVOLUTION NEURAL NETWORK
MODEL

Our goal is to predict how many retweets will
be in a cascade based on observed retweets during
the first T minutes after the original post. Let A be
the adjacency matrix of the social network and let
~x be a node-level feature vector. For example, if ~x
is an indicator variable for who retweeted before
time T then A · ~x will be a vector representing
the number of followers of those who posted in
the first T minutes. Similarly, Ak~x can be used to
construct features capturing network diffusion out

to k steps on the network from each of the users
who posted in the first T minutes. While these
sort of features could be engineered, we propose
that graph convolution neural networks (GCN) are
well-suited for this task.

The overall architecture of our model is given in
Figure 2. Two types of features are introduced at
different points in the network. Node-level features
are introduced early on through graph convolution
layers that capture network-diffusion effects (we
describe specific features in Section III). In partic-
ular, a GCN layer [18] is given by,

X l+1 = f(X l, A) = σ(AX lW l) (1)

where X l denotes the node-level features of the
lth layer, W l represent the weights of each feature
vector, A is the network adjacency matrix, and σ
represents a nonlinear activation function.

The primary difference between a feed forward
neural network and the graph convolution neural
network is that the former operates at a tweet
instance level, whereas the GCN operates on nodes
(actors). During election periods, it is common to
see tweeters that support the same party sharing
similar type of tweets. Hence there is a significant
advantage to capturing the connections between
actors that are represented as nodes in the network.

We note that point process based models [16]
are also suitable for capturing information diffu-
sion on networks. A Hawkes process model may
also incorporate the adjacency matrix, where the
intensity of retweets λi(t) at node i is determined
by,

λi(t) = µi +
∑
j

aijg(t− tj). (2)



Fig. 2. Architecture of the Graph Convolution Neural network Model

Here tweets occur at some baseline rate and are
also triggered by a post by friend j at time tj in
the network. The kernel g decays to zero to model
the fact that the probability of retweeting decays
over time.

However, models such as those in Equation 2 do
not incorporate nonlinear effects and also there is
information in the tweet itself that we would like to
capture as a feature, for example the political party,
topic, sentiment, etc. For this purpose we introduce
a dense layer after the GCN layers where tweet
level features are concatenated. The dense layer
is also necessary because we are not predicting at
the node level (which is the common application of
GCNs) and are instead predicting the final retweet
count over the whole network.

The specific architecture we employ is three
hidden layers, two GCN layers and a fully con-
nected layer. Because we aren’t privy to the ac-
tual followers network, we use a proxy based
on historical retweet sequences where actors have
jointly posted. The weighted adjacency matrix A
is constructed so that aij is proportional to the
number of times i and j have retweeted together
in the historical dataset.

III. ELECTION SPECIFIC FEATURE
ENGINEERING

We extract election-specific tweet level features
as follows. We have first identified the top key-
words belonging to the political parties in each
country using manual labeling. We provide an ex-
ample of these keywords and the associated party

in Table I. The brackets denote the party assigned
to each keyword. ANC, DA, EFF refers to the
African National Congress, Democratic Alliance,
and Economic Freedom Fighters respectively. We
then use keyword matching on each tweet to
identify to which political party the tweet belongs.
If the keyword/hashtag is irrelevant to elections
or inconclusive to classify, we assign the keyword
into an ”unknown” category. Next we compute a
polarity score for each tweet, assigning the tweet
to positive, neutral, or negative.

In Figure 3 we provide an example tweet
gathered during South Africa Election. The party
supported in the tweet is identified through the
keywords anc and whyivoteanc. The polarity score
is positive therefore we classify that the tweet
belongs to an author who supports ANC.

Fig. 3. A tweet posted during South Africa Presidential Elections

We also use tweet content and meta data to
create features. The number of mentions, hashtags,
and media items contained in the tweet history
are included as features, along with the number
of unique words contained in the original tweet
content. To estimate acceleration or deceleration



TABLE I

TOP 10 RENDING KEYWORDS IN SOUTH AFRICAN ELECTIONS

Hashtag User Mention Word
ayisafani(ANC) helenzille(DA) da(DA)
siyanqoba(Unk) lindimazibuko(DA) anc(ANC)
ivoteda(DA) julius sello malema(EFF) helenzille(DA)
nkandla(ANC) mmusi maimane(DA) zuma(ANC)
zuma(ANC) myanc (ANC) maimaneam(DA)
iecmustanswer(Unk) agangsa(Agang) malema(EFF)
togetherforchange(DA) jacob g. zuma(ANC) ayisafani(ANC)
wecanwin(ANC) iecsouthafrica(Unknown) amp(Unknown)
voteda(DA) mamphela ramphele(Agang) elections2014(Unk)
20yrsdemoc(Unk) whyivoteanc(ANC) sabc(Unknown)

of the cascade we also include the the number of
retweets in the 1st 10 minutes and the number of
retweets in the 2nd 10 minutes after the original
tweet gets posted.

We include user related features such as whether
the user is verified and the number of followers.
User features defined at the node level and input
into the GCN layer are non-zero only if the user
participated in the tweet in the first 20 minutes
after the original post. Table II lists the three types
of features that we extract from the dataset.

TABLE II

DIFFERENT TYPES OF FEATURES

Feature Type Feature Type

Tweet

# Mentions Numeric
# Unique Words Numeric
# Hashtags Numeric
# Media Items Numeric
# Retweets in 1st 10 minutes Numeric
# Retweets in 2nd 10 minutes Numeric

User
# Followers Numeric
# Friends Numeric
Is Verified Binary

Sentiment Polarity of the tweet Categorical
Party supported in the tweet Categorical

IV. EXPERIMENTS

A. Dataset

We evaluate our model by testing it on data from
Twitter collected during presidential elections in
Kenya (2013) and South Africa (2014). Subject-
matter experts who studied the elections were first
asked to generate semi-structured descriptions of
each election. These descriptions included collec-
tions of keywords, phrases, and individuals for
which we can search in a social media dataset. Tex-
tual expansion was then performed by querying an

undirected Twitter sample for content that matched
the expert-generated keywords. Keywords with a
strong co-occurrence connection with the original
query but are rare in the subject-matter expert
list were then added to the original query. After
expanding expert queries, we searched Twitter’s
full historical archive to acquire a large dataset
of Tweets for each election using Gnip’s native
support for textual, social, spatial, and temporal
queries to search for relevant Tweets posted from
within the target country, all of which are restricted
to 60 days prior and 30 days following the election
date in each country.

We then restricted to retweet cascades during
the elections results in 22,572 sequence for South
Africa and 140,521 retweet sequences for Kenya.
We further pruned the dataset to retweet sequences
having reshare count 10 or more. Table III sum-
marizes the number of retweet sequences.

TABLE III

RESULTS OF DATASET PRUNING

Dataset (#) before pruning (#) after pruning
Kenya 140521 9579

South Africa 22572 1677

B. Baseline Algorithms

We compare our approach to both statistical and
machine learning baseline models:

• SEISMIC [16]: A self-exciting Hawkes point
process model that predicts retweet count.

• Linear Regression using tweet-level features.
• Feed Forward Neural Network using tweet-

level features. A network with two hidden



layers (for comparison with two GCN layers)
and with ReLU activation function.

For linear regression, we use the scikit-learn
module available in Python. The neural network
models (feed forward and GCN) are implemented
in Tensorflow and training was conducted using
ADAM optimizer with a learning rate of .001. The
SEISMIC model is implemented as a package in
R.

C. Evaluation Metrics

Given the first 20 minutes of a retweet cascade
for tweet i, our goal is to predict the final retweet
count yi (cutoff to 1 month following the original
post). For fake news mitigation, being able to flag
the most viral tweets is of importance and therefore
we use precision in the top k (prec@k) tweets as
a metric (i.e. what % of tweets predicted to be in
the top k actually were in the top k). We also use
Mean Absolute Error (MAE) and the r2 coefficient
as metrics to compare competing models.

D. Experimental Results

We use a 70/30 train/test split to evaluate all
models. First, we conducted an experiment to
investigate how the different components of the
GCN, in particular the GC-layers and the tweet-
level layer, affect the performance of the model.
We ran the experiments on an IU Carbonate server
with 16 processors and 256GB of RAM. We ran
the GCN training until the error metric stabilized,
which took 3 hours in the case of the South Africa
dataset and 46 hours in the case of the Kenya
dataset.

Table IV shows the MAE value of the GCN
model with different network component combi-
nations.

TABLE IV

COMPONENT COMBINATIONS AND PERFORMANCE OF THE GCN

MODEL

Dataset Only Actor
features

Only Tweet
features

Both Tweet and
Actor features

Kenya 12.47 11.43 7.34
South Africa 13.20 14.26 10.18

To check how well GCN performs at ranking
viral tweets, we classified tweets into popular and
non-popular tweets (with 10% as the threshold).

In V we present precision@k values where k is
chosen to contain the top 10% of tweets in terms of
retweet count. We find that the GCN significantly
improves upon SEISMIC and the other baseline
models in terms of its ability to rank top viral
tweets.

TABLE V

PRECISION SCORES FOR THE POPULAR TWEETS

Model Kenya
Elections

South Africa
Elections

SEISMIC 0.66 0.66
Linear Regression 0.7 0.53
Feed Forward Net 0.46 0.48

GCN 0.77 0.72

In Table VI we display the mean absolute error
observed on all models when tested on the two data
sets. In South Africa, GCN is second to SEISMIC,
however it outperforms the other methods for
Kenyan elections.

TABLE VI

COMPARISON OF MEAN ABSOLUTE ERROR REPORTED BY ALL

THE MODELS

Model Kenya
Elections

South Africa
Elections

SEISMIC 9.31 8.27
Linear Regression 7.97 11.85
Feed Forward Net 7.75 14.26

GCN 7.34 10.18

Table VII shows how well all models fit to the
regression line (r2) with 72-73 percent of variance
explained by the GCN. Here GCN ranks 1st for
the South Africa dataset, though it is 3rd for
Kenya. However, we believe precision is the most
important metric for flagging viral tweets during
the election.

TABLE VII

COMPARISON OF R2 SCORE REPORTED BY ALL THE MODELS

Model Kenya
Elections

South Africa
Elections

SEISMIC 0.66 0.66
Linear Regression 0.86 0.59
Feed Forward Net 0.86 0.32

GCN 0.72 0.73

To confirm that the GCN is learning interesting
network features, we also added an experiment
where we use spectral embedding rather than the
GC-layers in the neural network. In particular, we



Fig. 4. Top five trending tweets in Kenyan Presidential Elections - Comparison between original retweet count and the predicted values
from all the models

applied spectral decomposition to the adjacency
matrix and used the top 10 components of the
spectral embedding as features. For each tweet se-
quence, we concatenate tweet related features with
the embedding result for the adjacency matrix.
Table VIII lists the MAE and r2 score reported,
which is significantly worse than the GCN.

TABLE VIII

PERFORMANCE EVALUATION ON FEED FORWARD NEURAL

NETWORK MODEL WITH SPECTRAL EMBEDDING OF ACTORS

ADJACENCY MATRIX

Dataset Mean Absolute Error R2 Value
Kenya 16.12 0.09

South Africa 10.82 0.38

Figures 4 and 5 compare the retweet count for
the top five trending tweets in the Kenyan and
South African elections dataset.

V. CONCLUSION

In this work, we introduced a graph convolu-
tion neural network model for early prediction of
retweet count during elections. The three types
of features extracted from the dataset were tweet
related, user related, and sentiment related. We
evaluated our model against a popular statistical
model SEISMIC, feed forward neural networks,
and a GCN without tweet-level information. For
the top 10 percent trending tweets, our model

predicts popularity with up to 15% better precision
compared to SEISMIC.

There are two areas where we are interested
in taking this work further. Constructing methods
such that the operations AX lW l can be efficiently
distributed across multiple GPUs or using an in-
memory framework like Spark will be important
to scale this type of method. Similar to the work
in [19], [20], another research direction would be
to extend recurrent neural point processes to the
graph convolution framework. A recurrent GCN
would allow for the incorporation of tweet level
and graph features, while capturing time dynamics
of retweet cascades.
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