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DISCUSSION OF: ESTIMATING THE HISTORICAL AND
FUTURE PROBABILITIES OF LARGE TERRORIST

EVENTS

By George Mohler

Santa Clara University

I congratulate Clauset and Woodard (2013) on a very interesting article.
The authors analyze a global terrorism dataset with the aim of quantifying
the probability of historical and future catastrophic terrorism events. Using
power law, stretched exponential, and log-normal tail probability models
for the severity of events (# deaths), the authors make a convincing ar-
gument that a 9/11 sized event is not an outlier amongst the catalog of
terrorist events between 1968 and 2007. This study builds upon earlier work
by Clauset, Young and Gleditsch (2007) that I also recommend for those
interested in the statistical modeling of terrorism.

While there is consensus amongst the models employed by Clauset and
Woodard that 9/11 is not an outlier (p > .01), the estimates are accompanied
by large confidence intervals on how likely a 9/11 sized event is. In Table
2, where the authors forecast the probability of a 9/11 sized event in 2012-
2021, forecasted probabilities range from 0.04 to .94 depending on the model
and the frequency of events over the time window. Here the uncertainty has
less to do with the model specification and more to do with uncertainty in
the frequency of events over the next decade. Terrorist events do not follow
a stationary Poisson process and the intensity can fluctuate greatly over a
several year period of time.

The authors remark in their discussion that relaxing the stationarity
assumptions and incorporating spatial and exogenous variables may help
tighten the range of forecasted probabilities. I would add here that some
progress has been made, in particular on modeling terrorist event time series
as non-stationary point processes (see Porter and White (2012); Lewis et al.
(2012); Zammit-Mangion et al. (2012); Mohler (2013); Raghavan, Galstyan
and Tartakovsky (2012)). Terrorism event processes are history dependent
and intensities exhibit correlations at timescales of weeks and months due
to self-excitation (see Porter and White (2012); Lewis et al. (2012)) and
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exogenous effects (see Raghavan, Galstyan and Tartakovsky (2012); Mohler
(2013)).
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Fig 1. Estimated intensity of GTD events (xmin = 10), posterior mean (black) and 90%
range (grey), over 1980-2011 and several forecasted intensities over 2012-2021. Inset figure
is the posterior distribution of the total number of events (xmin = 10) forecasted for 2012-
2021.

Log-Gaussian Cox processes (LGCPs) can be used to forecast the fre-
quency of terrorist events over the next decade, allowing for mean-reversion
and some level of smoothness of the intensity. Here we fit the intensity of a
LGCP to the time series of global terrorist attacks with 10 or more deaths
from 1980 to 20111 using Langevin Monte Carlo (see Mohler (2013)). The
intensity of the process λt = ext is determined by a Gaussian process xt
satisfying the mean-reverting stochastic differential equation,

(1) dxt = −ω(xt − µ)dt+ αdBt.

We jointly sample the posterior of the intensity and model parameters and
display the posterior mean and 90% range in Figure 1. For each sampled
intensity, we use the terminal estimated value at the end of 2011 and the
corresponding posterior parameters to simulate the intensity forward in time
over the range 2012-2021. The inset in Figure 1 displays the posterior distri-
bution of the 10 year frequency of events over 2012-2021, with most probabil-
ity mass contained between 1,000 and 3,000 events of severity 10 or greater.

1data source: Global Terrorism Database
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This result would indicate that Clauset and Woodard’s “status quo” fore-
cast is more likely than either the “optimistic” or “pessimistic” scenarios (it
should be pointed out that our forecast of the frequency of events utilizes
GTD data, whereas Clauset and Woodard use RAND-MIPT).

The probability of catastrophic terrorist events also depends on the type of
weapon used. Clauset and Woodard (2013) find that the estimated historical
probability of a 9/11 sized event is greatest for explosives (p = .37) , fire
(p = .14), and firearms (p = .12). Given that 9/11 is categorized as “other”
and involved a high degree of planning and coordination, it may not be the
case that all types of terrorism can be modeled alongside “other” events
as iid random variables. In this case it becomes more likely that 9/11 is
an outlier, given that the confidence interval the authors provide for the
historical probability of a catastrophic event of type other is [0, .24] and the
mean is p = .06.

Ideally model development should be done in collaboration with domain
experts who can provide insight into whether weapon-dependent severity
probabilities are realistic. Here it may be useful to consider the distribution
of the sample max of competing models to determine plausibility. In Figure
2 (right) we plot the severity of the sample max as a function of the scaling
parameter for the 90th, 95th and 99th percentiles. For the MLE parameter
α = 2.4, the 95th percentile of the sample max is approximately 12,000 and
the 99th percentile is approximately 37,000, an order of magnitude larger
than 9/11 (dashed line in Figure 2). The authors note uncertainty in the
estimate for α, in particular 15% of bootstrapped estimates cluster around
α = 2.2 (see Figure 2 left). A decrease in the scaling parameter corresponds
to an increase in the severity threshold separating rare from plausible. The
95th and 99th percentiles for α = 2.2 correspond to severities of 37,000 and
130,000 respectively. One question that needs to be addressed is whether
events of various types, such as knife or firearm, can produce an event with
104 or 105 casualties. If not, then the power law or the iid assumption may
not be appropriate.

We end this discussion by analyzing events of type “explosive” that Clauset
and Woodard estimate as having the highest probability (p = .37) among all
weapon types of producing a 9/11 sized event. In Figure 3, we plot the best
fit power law model (red) using the KS estimation procedure Clauset and
Woodard outline against the empirical distribution of events of type explo-
sive. The cutoff point of the tail xmin is determined by minimizing the L∞
distance between the tail model CDF, F (x;xmin), and the empirical CDF,
G(x;xmin). The tail model CDF F is estimated for fixed xmin via MLE and
both F and G are normalized to be cumulative distributions on [xmin,∞).
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Fig 2. Left: Bootstrap probability distribution of estimated scaling parameter α, estimated
jointly with xmin from entire RAND-MIPT dataset of 13,274 events. Right: 90th, 95th and
99th percentiles of the sample max (sample size 994, xmin ≥ 10) corresponding to varying
scaling parameter α.

It should be noted that the power law model exhibits a significant de-
viation from the data at the “extreme” tail, i.e. the 40-50 events with the
largest severity. A weakness of the author’s KS estimation procedure is that,
for small xmin, error in the extreme tail is ignored because the KS error sat-
isfies the inequality,

(2) |F (x;xmin)−G(x;xmin)| ≤ max{1− F (x;xmin), 1−G(x;xmin)},

and the probabilities on the right in (2) are small for large x, small xmin (but
may be large for large x, large xmin). Thus the KS procedure may select a
value for xmin that fits the mid-tail over a value that fits the extreme tail.
This is not ideal since the goal here is to estimate the probability of the
most extreme events, not mid-sized events. To give a concrete example, we
fit a piecewise power law to the explosive events and plot the CDF in blue in
Figure 3. The value x = 80 is chosen by inspection for the starting point of
the extreme tail, leaving 43 events to the right. A likelihood ratio test rejects
the power law in favor of the piecewise power law at the p = .07 level and
furthermore the piecewise power law has a lower KS error (.027 compared
to .033). The odd property of the KS estimation procedure is that if the
first component of the piecewise power law is removed, then the model has
a worse KS error than the single power law model even though the extreme
tail component is unchanged. The piecewise power law model corresponds
to a historical 9/11 probability of ≈ .04, an order of magnitude smaller.

We have ignored the role of variance in our discussion of the power law
fit and it is possible that 40-50 events is too small of a sample size for
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Fig 3. Empirical distribution for explosive events along with MLE power law distribution
and piecewise power law distribution.

estimating the tail. A better approach might be to compute the KS error
on the extreme tail only and then choose xmin via cross validation. Further
research is needed on the selection of xmin, in particular on how to achieve
a good fit in the extreme tail without over-fitting.
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