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Abstract—Temporal point processes have many applications,
from crime forecasting to modeling earthquake aftershocks se-
quences. Due to the flexibility and expressiveness of deep learning,
neural network-based approaches have recently shown promise
for modeling point process intensities. However, there is a lack of
research on the robustness of such models in regards to adversar-
ial attacks and natural shocks to systems. Precisely, while neural
point processes may outperform simpler parametric models on
in-sample tests, how these models perform when encountering
adversarial examples or sharp non-stationary trends remains
unknown. Current work proposes several white-box and black-
box adversarial attacks against temporal point processes modeled
by deep neural networks. Extensive experiments confirm that
predictive performance and parametric modeling of neural point
processes are vulnerable to adversarial attacks. Additionally, we
evaluate the vulnerability and performance of these models in
the presence of non-stationary abrupt changes, using the crimes
dataset, during the Covid-19 pandemic, as an example.

Index Terms—Point process, Adversarial attacks, Deep learn-
ing, Nonparametric modeling

I. INTRODUCTION

Temporal point processes utilized in sensitive fields and
security-related tasks such as analyzing electronic transaction
records [1], forecasting earthquake aftershocks [2], mitigating
the spread of fake news [3], and allocating police to crime
hot spots [4]. Considering the deep learning approaches’ high
success rate and influence in various domains, neural network-
based approaches to modeling point processes have recently
received attention from the research community [5]–[7] to
capture real event patterns better than parametric models.
However, deep learning approaches risk over-parameterizing
models and overfitting real-world, noisy data despite their suc-
cess. Furthermore, there is a lack of research into how robust
such models are to natural shocks to systems, e.g., pandemic
and adversarial attacks impact deep point process forecasts of
crime. Moreover, adversarial samples can be transferable from
one deep learning network to another and become a black-box
attack which is a more elevated risk. Such research is crucial
for security purposes and understanding deep learning models
to make machine learning models trustworthy.

A. Contribution

Despite the remarkable success of deep neural networks
(DNN)s, they suffer from severe vulnerabilities to adversarial

attacks. Vulnerability’s examination of DNN in computer
vision and natural language processing has received attention
recently. However, to the best of our knowledge, we are the
first to explore the adversarial methods for point processes
modeled by DNN and examine their performance. In partic-
ular, I) We propose several adversarial methods to generate
white-box and black-box adversarial attacks on point processes
modeled by DNN. II) We show how adversarial attacks can
disturb underlying parameters of point processes which are
considered a threat to parametric modeling. Furthermore, III)
We illustrate how susceptible deep point processes are to
natural shocks and non-stationary changes in data.

B. Organization

The rest of the paper is organized as follows: Section II
revisits some basic definitions in point processes and discuss
the related work in recurrent neural networks (RNNs), adver-
sarial attacks of deep learning models, and the robustness of
such models. Section III sets up the problem and formalizes
the algorithm for crafting adversarial examples. Section IV
discusses the utilized datasets. Section V presents our results
and discusses various attacks by comparing the models per-
formance, and the last section concludes the paper.

II. RELATED WORK

Temporal point processes are practical mathematical tools
for modeling event data in which the inter-event times as
a random variable are modeled. Therefore, there is no re-
quired time window to aggregate events, which may cause
discretization errors; this is the main difference between point
process models and the discrete-time representation utilized
in time series analysis [8]. Moreover, point processes can be
deterministic or stochastic, and non-stationary Poisson, self-
correcting, and Hawkes process are stochastic point processes
that we have utilized in the current work.

As a result of advances in deep learning techniques, re-
searchers have proposed RNN to model the intensity function
of point processes [5], [9]. Most of the proposed methods uti-



lize Long-Short Term Memory (LSTM) [10]; that we reiterate
its formulation as follows

it = σ(Wixt + Uiht−1 + Vict−1 + bi),

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf ),

ct = ftct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc),

ot = σ(Woxt + Uoht−1 + Voct + bo),

ht = ot ⊙ tanh(ct)

(1)

where ⊙ is element-wise multiplication, and σ is the logistic
sigmoid function. The above system can be abstract as an
LSTM equation as (ht, ct) = LSTM(xt,ht−1 + ct−1) [5].

Such a model can encode a nonlinear link between the
predicted transient occurrence intensity of different types of
events with the history of participator events, which is more
expressive, and it can model more complexity in data than
previous parametric or non-parametric models [11].

The RNN-based model proposed in [5] provides a black-box
approach to model the intensity while both background and
effect of history are considered. In their modeling, presented
in (2) below, the background intensity is modeled by an RNN
as a time series with its units aligned with time series indexes,
{yt}Tt=1, while another RNN handles the historical events
whose units are aligned with asynchronous events to capture
the long-range dynamics, {zi, ti}Nt=1.

(hy
t , cyt ) = LSTMy(yt,hy

t−1 + cyt−1),

(hz
t , czt ) = LSTMz(zt,hz

t−1 + czt−1),

et = tanh(Wf [hy
t ,hz

t ] + bf ),

Ut = softmax(WUet + bU ),

ut = softmax(Wu[et,Ut] + bu),

st = Wset + bs,

(2)

In (2), the subscripts U and u indicate the primary- and
secondary-type of events, and s is the timestamp of each event.

Besides achievements in neural networks and their applica-
tions, recent research has revealed that neural network models
in practice are vulnerable to misclassifying adversarial samples
that have been crafted by adding an imperceptible additive
perturbation to the data samples. In deep learning models, such
a vulnerability was assumed to be explained by nonlinearity
and overfitting. However, [12] argues such an assumption and
shows deep learning models are vulnerable because of the
linearity of adversarial perturbations, which can be analyzed
as a property of high-dimensional dot products. On the other
hand, neural networks, e.g., ReLUs, and LSTMs networks, are
overly linear to oppose linear adversarial perturbation. In their
work, they have suggested fast methods to generate adversarial
samples, such as the fast gradient sign method (FGSM) [12],
and claimed in adversarial sample creation, the perturbation’s
direction is more important than the specific point in space.

In addition to security concerns, research in the robustness
of deep learning models are showing study of adversarial
examples crafted under limited situations is helpful since
it provides new insight into the geometrical characteristics
and behavior of models in high-dimensional space; e.g., the

characteristics of adversarial images close to the decision
boundaries can help describe the boundaries’ shape [13].

Recent research experiments have shown the amount of
perturbation to fool deep learning models can be extremely
limited, as [14] proposed a low cost, black-box attack to
fool visionary deep learning models, where the only available
information is the probability labels and only one pixel can
be modified based on differential evolution (DE). One critical
property of such attacks is their flexibility; they can attack
different networks regardless of their differentiability.

Generally, adversarial attacks are not limited to visionary,
and speech-to-text systems are also exposed to misclassifying
adversarial samples. Reference [15] examines the adversarial
attacks in the audio domain using the Connectionist Temporal
Classification Loss Function (CTCLF) as an attack mecha-
nism and PCA as an attack and defense mechanism. In this
experiment, CTCLF and PCA, as black-boxed approaches,
have successfully attacked DeepSpeech1. In contrast, PCA as
a defense mechanism does not improve the performance of
DeepSpeech against adversarial attacks.

Point processes and viral processes are confirmed to be
sensitive to changes in network structure. Reference [16] has
shown the evolution of viral processes on a network is highly
sensitive to the structural features of the network. They have
discussed that assortativity and degree distribution cannot fully
explain the variance in the spread of viruses; instead, graphlet
distribution can explain such a variance.

Additionally, Hawkes process is used in anomaly detection.
For example, reference [17] proposes a framework using the
multivariate Hawkes process and reinforcement learning as
a fake news mitigation framework on networks. The point
process defines “mitigation” in this work on the network, and
finding the optimal mitigation strategy is the objective that
determines how to adjust the exogenous intensity of the few
mitigator nodes on the network.

Adversarial attacks on time series models are another related
work. In [18], the authors propose adversarial attacks on
deep learning time series classifiers using the fast gradient
sign method (FGSM), and the basic iterative method (BIM)
[19], [20]. However, their methods are considered black-box
since adversarial samples are crafted using the gradient of
ResNet [21], rather than the targeted network. Lastly, [22]
proposes adversarial attacks on Convolutional Neural Network
(CNN), LSTM, and Gated Recurrent Unit (GRU) networks
as multivariate time series regressions where the adversarial
samples are crafted using FGSM and BIM.

III. METHODOLOGY

The robustness of neural point processes to natural shocks
and adversarial attacks remains an open problem to date. We
leverage existing research on adversarial attacks in vision and
signal processing and extend such methods, when possible,
to temporal point processes. We additionally examine the
transferability of attacks and compare their performance in

1Speech-to-text neural network implemented by Mozilla



transferred black-box settings. We especially believe methods
developed for time series data will be applicable to point
processes since they share common characteristics such as
sequential and noisy data; the difference is that point processes
model discrete events using a continuous intensity and time
series bin events or other variables in time.

A. Models

This work is limited to three type of point processes,
non-stationary Poisson, self-correcting, and Hawkes processes,
where the main focus is Hawkes processes. In non-stationary
Poisson process, unlike regular Poisson process, the average
rate of events is allowed to change by time. Non-stationary
Poisson has all properties of a Poisson process, except for the
fact that the intensity is a function of time, i.e. λ = λ(t),
instead of being fixed.

A point process N is called self-correcting if
cov(N(s, t), N(t, u)) < 0 for s < t < u. In this formulation,
cov denotes the co-variance of the two quantities [23].
Intuitively, due to the negative correlation, past points’
occurrence, inhibits the future points’ occurrence [24].

Lastly, in Hawkes processes [25], [26], the event rate is
not fixed, but is dependent on some random inputs, including
the history of the process. Hawkes process is a self-exciting
process, each arrival increases the rate of future arrivals for
some time and is determined by a background Poisson process
λ0(t), which reflects spontaneous events and at each event
in the history a Poisson process g is centered at that event
reflecting the increase in the intensity in near future. In
summary, the intensity of the Hawkes process can be modeled
as follows

λ(t) = λ0(t) +
∑
ti<t

g(t− ti), (3)

where λ(t) donates the event rate at time t.
In this work, we explore the performance of two deep

neural networks-base point processes. For the exponential
hazard (EXP) model as proposed by the authors of [9] and
followed by [6], the inter-event time, xi = (ti − ti−1) is
fed into a the RNN and the hidden unit of RNN is updated
by hi = f(Whhi−1 + W xxi + bh). Here f represents the
activation function, and Wh, W x, and bh are the recurrent
weight matrix, input weight matrix, and bias term, respectively
[9]. The conditional intensity is a function of the elapsed time
from the latest event and the hidden state of the RNN, as:
λ(t|Ht) = ϕ(t− ti|hi), and ϕ is a non-negative function that
is the hazard function with the following form as assumed by
[9]:

ϕ(τ |hi) = exp(wtτ + vϕ.hi + bϕ) (4)

τi = ti+1 − ti is the inter-event interval.
The other examined model is the fully neural network-

based (NN) model for general temporal point process [27], that
relaxes the constraints on the time course for hazard functions
of point processes while they are modeled using RNNs. In this
model, the cumulative intensity function is modeled by the
integral of intensity function and the instantaneous intensity is

obtained by taking the derivative of the cumulative intensity
function. Such a model allows us to have flexible and general
intensity function with exact evaluation. Formally, instead of
modeling the hazard function ϕ, in this model the cumulative
hazard function Φ(τ,hi) is modeled where;

Φ(τ,hi) =

∫ τ

0

ϕ(s,hi)ds (5)

And, one can achieve the hazard function by;

ϕ(τ,hi) =
∂Φ(τ,hi)

∂τ
(6)

In this setting, hi is the hidden state of the RNN and τi =
ti+1 − ti is the inter-event interval [27].

B. Adversarial attacks

In this section, we present adversarial attacks for point
process models. In regression problems, adversarial attacks can
be defined based on numerical instability of the models. The
numerical (in-)stability of an algorithm is defined based on the
extent to which a function’s output changes with changes in
the input [28] and adversarial attacks are toward increasing the
instability of the model where defense mechanisms decrease
it. Formally, considering a neural regression model T (x, θ),
where T : RN0 → RNm has N0 scalar inputs and Nm

scalar outputs, the objective of T (x, θ) for x ∈ RN0 and
corresponding target y ∈ RNm is [29]

argmin
θ

l(T (x, θ), y) (7)

Then given T (x, θ), in the adversarial attack setting, the
objective of adversary with budget ϵ is to maximize the
instability of T (x, θ), which is mathematically formulated
below

argmax
||xadv−x||p≤ϵ

l(T (xadv, θ), y) (8)

where p = 1, 2, or ∞. Notice that the optimal solution, xadv ,
to the above optimization problem is not unique.

Furthermore, depending on the algorithm utilized in adver-
sarial attack generation and the degree of provided information
to the attacker, attacks can be white-box or black-box attacks.
For white-box attacks, the attacker is fully aware of the
internals of the target model and its weights (θ) and uses
the model’s gradient to find the vulnerable regions of the
input space that affects the model’s output drastically. In a
black-box setting, no information about the attacked network
is provided to the attacker. However, the attacker can compose
transferable adversarial perturbations to the target model using
an alternate model. In existing work, we have crafted the
adversarial samples by strategies presented in the following
to attack temporal point processes.

1) Fast Gradient Sign Method (FGSM) : FGSM [12] is
a bounded attack initially proposed for the visionary. Here,
we extend it to point process regression, and the adversarial
sample is formed by using perturbations in the direction of the



gradient. The adversarial sample generated by the FGSM can
be formulated as:

Xadv = clip(X + ϵ · sign(∇xJ (θ,X)),min(X),max(X))
(9)

where J (θ,X)) is the required training’s cost of the neural
network, ϵ is the perturbation factor, and clip(·, a, b) function
squeezes its input to the range of [a, b].

2) Iterative Fast Gradient Sign Method (iFGSM): ifGSM,
also known as Basic Iterative Method (BIM) [19], [20], is an
iterative form of FGSM that, instead of one single step, k steps
attack with a budget α is applied iteratively as presented in
(10).

Xadv0 = X

Xadvt+1 = Xadvt + α · sign(∇xJ (θ,Xadvt))

Xadvt+1 = clip(Xadvt+1 , Xadvt+1 − ϵ,Xadvt+1 + ϵ)

Xadv = Xadvk

(10)

3) Projected Gradient Descent (PGD): PGD attack as pre-
sented by [20] without random start, is a more potent iterative
version of FGSM. Here, we apply PGD as a generalization of
iFGSM with random initialization.

Xadv0 = X + clip(N (0d, Id),−ϵ,+ϵ)

Xadvt+1 = Xadvt + α · sign(∇xJ (θ,Xadvt))

Xadvt+1 = clip(Xadvt+1 , Xadvt+1 − ϵ,Xadvt+1 + ϵ)

Xadv = Xadvk

(11)

4) Momentum Iterative Fast Gradient Sign Method
(miFGSM): miFGSM [30] is a transformation of iFGSM such
that, before applying FGSM with a budget α, the gradient of
the previous t steps with a decay factor µ is employed to
update the gradient at step t+ 1. In this approach, the update
directions are stabilized, and the algorithm skips poor regional
maxima during the iterations. Therefore, the crafted adversarial
samples are more transferable. However, despite the high cost
of miFGSM attack, as we see in section V, it is not generating
more transferable samples in comparison to previous single
step and iterative attacks.

Xadv0 = X, g0 = 0

gt+1 = µ · gt +
∇xJ (θ,Xadvt)

|∇xJ (θ,Xadvt)|1
Xadvt+1 = Xadvt + α · sign(gt+1)

Xadvt+1 = clip(Xadvt+1Xadvt+1 − ϵ,Xadvt+1 + ϵ)

Xadv = Xadvk

(12)

5) RAND+FGSM (R+FGSM): R+FGSM has been pro-
posed by [31] to attack the adversarially trained neural net-
works. Here, in one step, a small random perturbation with size
α is applied to the input before applying FGSM of (ϵ−α) cost.
R+FGSM is a randomized, single-step and computationally
efficient form of PGD.

6) Saliency Map (SM): A saliency map in computer vision
indicates the level of significance of a pixel to the human visual
system that has application in region-of-interest extraction,
image cropping, image captioning, and beyond [32], [33].
Similarly, we propose another single step, low cost adversarial
attack where we first identify the important events, depending
on the gradient of the neural network at a particular event,
within the input sequence and then perturb identified events by
the adversarial saliency map approach to achieve the adversary
sample. Formally, we propose the following attack strategy

Xadv = X

Xadv
i = Xi + ϵ · sign(∇xJ (θ,Xi))

Xadv
j = Xj − ϵ · sign(∇xJ (θ,Xj))

(13)

where event i maximizes ∇xJ (θ,X) and event j minimizes
it w.r.t. the input event sequence.

7) Gradient descent (GD): In the proposed gradient descent
adversarial attack, an adversarial event time within interval of
first and last event of the sequence is added to the sequence,
using the procedure presented in Algorithm 1.

Algorithm 1 Gradient descent adversarial attack procedure

procedure GDADVERSARIAL(X , ϵ, α)
Xadv ← X ▷ Initialization
event← genRandomVal[min(Xadv),max(Xadv)]
idx← genRandomInt[0, length(Xadv)]
Xadv.pop(0)
Xadv .insert(idx, event)
while (∇xJ (θ,Xadv

idx ) is changing) and α < ϵ do
event← event+ (α · ∇xJ (θ,Xadv

idx ))
Xadv[idx]← event
idx← getIdx(Xadv, event)

end while
return Xadv

end procedure

8) Time manipulation (TM): In point process applications,
e.g., crime forecasting based on reported crimes to the police
departments, one can easily report a fake crime to mislead
the point process algorithm. Following the same context, we
propose a time manipulation attack. Here, we remove the first
event in the event sequence and add a random event within
the interval of the first and last event’s time regardless of the
model weight and architecture. Therefore, we consider TM as
a black-box version of the GD attack since it is independent
of the network architecture and the loss function.

C. Transferability and transferable black-box setting

Regardless of the adversarial attacks’ strength against deep
learning models, the transferability of adversarial samples has
raised concerns in literature [12], [34], [35] where adversarial
samples between two independent trained models are trans-
ferred. In the current work, we study this phenomenon by
proposing transferable adversarial attacks, i.e., we craft the
adversarial instances using the presented white-box attacks on



a model with similar architecture and more trainable parame-
ters. Then, the adversarial samples are employed to attack the
target model. Attackers can have more neural network layers,
RNN units, or hidden neural network units such that,

• RNN units: Means the number of units in an RNN layer.
• Network depth (layers): Means the number of hidden

layers of the cumulative hazard function network.
• Hidden neural network (NN) units: The number of units

in each hidden layer of NN model [27].

D. Baseline and Metrics

Baseline corresponds to the standard case when a model is
built without any adversarial assumptions. We will compare
each potential adversarial attack’s performance when under
attack to the baseline and its performance when no attack has
occurred. Our metrics in this comparison are:

• Mean Negative Log Likelihood
• Mean Absolute Error
• Fooling Error

FE =
1

K

K∑
k=1

||T (xadv
k )− T (xk)||q (14)

• Symmetric Mean Accuracy Percentage Error [29]

SMAPE =
2

K+

K+∑
k=1

||T (xadv
k )− yk||q − ||T (xk)− yk||q

||T (xadv
k )− yk||q + ||T (xk)− yk||q

(15)
Where q norm in FE and SMAPE metrics, must match the lp
norm employed in generating adversarial attacks and SMAPE
is limited to the K+ positive elements in the summation.

IV. DATA

Similar to [9], [27], experiments are run on the following
point process datasets. We split each dataset into train and
test sets. The train set is then used to estimate the model’s
parameters in the training phase, and the model’s performance
on the test set is quantified by the evaluation metrics.

• Hawkes Process In this work, we have simulated [26]
100,000 event times from the Hawkes process with the
sum of exponentials kernel, and the conditional intensity
function is given by:

λ(t|Ht) = µ+Σti<tΣ
M
j αjβj exp{βj(t− ti)}, (16)

where M = 1, µ = 0.2 , α1 = 0.8, and β1 = 1.0. The
ratio α

β is known as branching ratio and is the declaration
of the Hawkes process regime and if the Hawkes process
explodes (super-critical regime and α

β > 1), or not [26].
• Self-correcting Process For Self-correcting process,

100,000 event times are simulated by the conditional in-
tensity function that is given as λ(t|Ht) = exp(t−

∑
ti<t

1).

• Non-stationary Poisson Process (N-Poisson) Finally for
non-stationary Poisson dataset, 100,000 events time are
simulated from the following conditional intensity func-
tion λ(t|Ht) = 0.99 sin( 2πt

20000 )+ 1 as suggested by [27].

• Crimes and Covid-19 To assess the performance of
models concerning non-stationary changes, such as the
effect of the Covid-19 pandemic on reported crimes in
Chicago, we use the reported crimes to the Chicago police
department from 2016 to 2018 as training, and crimes in
2019 and 2020 as test set, separately2.

V. RESULTS AND DISCUSSION

This section presents the results of our adversarial attacks
on the deep point process models on the specified datasets.
We present the predictive performance-related experiments on
all point process datasets. In adversarial attacks on regression
models, we expect some changes in response for any changes
in the input. In this situation, the adversary aims for a dramatic
change in output for a small change in input [28]. According to
the experiments, to have high effect, the perturbation factor (ϵ)
needs to be large enough, although with ϵ = 0.1, the change in
performance is statistically significant yet. In all of our attacks,
ϵ is set to 0.1, and for iterative attacks, k = 10 and α = ϵ/10.

We see that the choice of metric is a critical factor in
evaluating adversarial attacks’ effectiveness. Specifically, we
illustrate that MAE is the least expressive evaluation metric
in an adversarial setting. Furthermore, through extensive ex-
periments, we see our proposed PGD can be considered as
a “universal first-order attack” such that by first-order, we
mean the adversarial attacks solely depend on the gradient
of the neural network as suggested by [19]. However, our
results reveal that such a generalization is limited to first-order
adversarial attacks utilizing the entire gradient vector.

From the results, iFGSM has the best overall performance in
white-box attacks against both fully neural network (NN) and
exponential kernel (EXP) models. Furthermore, similar to [19],
our results suggest that the transferability of attacks decreases
as the power of attack increases, and single-step attacks have
more transferability in comparison to iterative attacks.

We discuss adversarial attacks manipulating the parameters
and branching ratio of the Hawkes process. Finally, we investi-
gate the effect of non-stationary abrupt changes on the models’
performance, using the crimes dataset during the Covid-19 era.

In Fig. 1, we present two adversarial samples along with the
conditional intensity values for each sequence and simulation
of the model prediction for the real and adversarial input. From
the examples, it can be inferred that unlike their intensity,
the adversarial samples are close to the real sample in time
space. In Table I, the performance of the fully neural network
model on the specified datasets as well as the most effective
white-box and black-box attacks are presented. Consecutively,
in Table II, we present the performance of exponential hazard
model on the same datasets and attacks.

From Table I and Table II, against the EXP model, iFGSM
is not as effective as the NN model, but it still increases the
predictive uncertainty (MNLL).

In Fig. 2, we compare all attacks for both the NN and the
EXP models on Hawkes process dataset. As illustrated, with

2https://data.cityofchicago.org/Public-Safety/Crimes-Map
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Fig. 1: Real input sequence (Green) and the corresponded
adversarial sequence (Red) on Hawkes data. Left: Transferred
FGSM from larger network, layers = 4. Right: Transferred
FGSM from larger network, RNN=256. The vertical axis
represents the conditional intensity.

TABLE I: Predictive performance of fully neural network
(NN) model in presence of the most effective white-box and
black-box attacks.

Point process Attack MNLL
(e-01)

MAE
(e-01)

FE
(e-02)

SMAPE
(e-01)

Hawkes
No Attack 4.1 7.77 NA NA

iFGSM 6.54 8.21 4.75 3.66
TM 5.98 8.36 2.12 7.08

NS-Poisson
No Attack 9.83 10.0 NA NA

iFGSM 10.41 10.38 4.64 1.573
TM 12.91 11.46 40.56 4.05

Self-correcting
No Attack 8.21 4.97 NA NA

iFGSM 16.31 9.52 48.00 7.77
TM 11.94 7.05 49.79 8.32

∗ We recognize a white-box attack as ”effective”, if both FE and SMAPE are the
highest among first-order white-box attacks.
The column-wise scale of each metric is presented in () below it.

respect to Fooling error (FE) and Symmetric Mean Accuracy
Percentage Error (SMAPE), TM is the most effective attack,
although, unlike others, TM is a single-step, single-point,
black-box attack, and the perturbation is local. Conversely, in
first-order attacks, the perturbation is dispersed over the input
sample, and the attack affects every event time in the sequence
utilizing the gradient of the network. Such outcomes imply
despite the history term in the Hawkes process’s conditional
intensity, the model is vulnerable to spikes in the input and
more robust against global perturbations.

In adversarial attacks on neural point processes, the models’

TABLE II: Predictive performance of exponential hazard
(EXP) model in presence of the most effective attacks.

Point process Attack MNLL
(e-01)

MAE
(e-01)

FE
(e-02)

SMAPE
(e-01)

Hawkes
No Attack 4.63 8.01 NA NA

iFGSM 5.67 8.26 3.66 2.32
TM 6.67 8.72 28.58 6.27

NS-Poisson
No Attack 9.7 10.2 NA NA
miFGSM 10.32 10.60 5.27 1.65

TM 13.36 11.42 37.74 4.25

Self-correcting
No Attack 7.82 4.94 NA NA

iFGSM 18.86 9.65 50.41 8.01
TM 11.49 6.91 49.02 8.36
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Fig. 2: Effect of adversarial attacks against NN (Blue) and
EXP (Orange) models on their predictive performance.

predictive performance is the goal of the attacks. Not surpris-
ingly, the estimated parameters are also vulnerable if the neural
point process model is used to estimate the intensity function.
Considering an application of the Hawkes process, e.g., crime
forecasting, the intensity of the event’s arrival is increased by
an event occurrence and then exponentially decays towards the
baseline level. Therefore, the values of µ, α, and β influence
the model’s behavior in predicting the arrival time of the event.

In the studied Hawkes process in the current work, since the
background intensity, µ, is fixed, depending on the branching
ratio, the Hawkes process will explode and will be in super-
critical regime, if α

β > 1, as we discussed in section IV.
From Table III, the test set is a subcritical (αβ < 1) Hawkes

process. Moreover, on adversarial sets, for both the NN and
EXP models, all adversarial sets, except GD against NN, are
subcritical Hawkes processes. However, the predicted events
by the NN model are all super-critical Hawkes processes,
except for predictions in presence of SM and GD attacks. On
the other hand, the predictions made by the EXP model are all
subcritical Hawkes processes, except for GD. Preserving the
Hawkes process’s regime is an important characteristic and
results suggest the NN model cannot maintain it.

From here, we recommend considering the effects of adver-
sarial attacks on the predictive performance and point process
parameters to be regarded as Micro and Macro effects, respec-
tively. In the Micro effect, the effect of an adversarial attack is
limited to each input sequence and it’s reflected in predictive
performance. In contrast, for the Macro effect, the adversarial
attack may affect the modeled point process parameters and
this affect the parametric modeling performance. Presented
results both on predictive performance and Hawkes process
parameters suggest that although adversarial attacks show
disagreement in their Micro effects, but all first-order white-
box attacks agree on their Macro effects.



TABLE III: Adversarial attack’s Macro effect on fully neural
network (NN) and exponential hazard (EXP) models w.r.t.
Hawkes process parameters, µ, α, and β.

Fully neural network Exponential hazard
µ

(e-02)
α

(e-01)
β

(e-01)
µ

(e-02)
α

(e-01)
β

(e-01)

Test set 1.29 8.74 9.11 1.29 8.74 9.11
First-order attacks 99.8 10.0 13.0 99.8 10.0 13.0

GD 99.6 9.9 9.08 99.6 9.9 10.2
TM 99.6 9.99 11.5 99.6 9.99 11.0

Prediction in presence of adversarial attacks
No Attack 1.25 8.79 8.43 1.32 8.70 9.43

PGD 1.20 8.82 7.94 1.32 8.71 9.19
iFGSM 1.17 8.84 7.77 1.32 8.71 9.16

R+ FGSM 1.18 8.83 7.84 1.32 8.72 9.11
miFGSM 1.18 8.84 7.80 1.32 8.71 9.15

FGSM 1.18 8.83 7.83 1.32 8.71 9.24
SM 1.23 8.81 8.19 1.32 8.70 9.35
GD 1.12 8.88 7.372 1.23 8.81 8.20
TM 2.73 7.30 53.5 1.54 8.41 10.00

In Fig. 3 and Fig. 4 we represent the effect of adversarial
attacks on Hawkes parameters. As presented, all first-order
white-box attacks, PGD and surrounded gray area, both against
the NN model and the EXP model, share the underlying
parameters, µ, α, and β and agree on their Macro effects.
Additionally, although all adversarial events have a greater
intensity range in comparison to real events, but both neural
models are successful in maintaining the range of predicted
intensity, even in presence of adversarial attacks. However, if
the adversarial sets, e.g., PGD, be fed to a parametric model,
the parametric model will failed in modeling them.

Considering single-point attacks, e.g., GD, they are not fol-
lowing the rest of adversarial attacks, but are more proximate
to each other. The algorithm responsible for generating GD
samples can explain the shift in parameters and intensity func-
tions of TM and GD since the GD attack can be considered
as a steady version of TM. To evaluate the transferability
of white-box attacks against NN and EXP models, for each
attack, we perform attacks against independently trained larger
networks, more complexity, and then deploy the adversarial set
to our original targeted models. To increase the complexity, we
try hyper-parameters as discussed in the transferability section
III-C. For the exponential hazard model, the ”RNN units” is
the only available hyper-parameter. In Fig. 5, transferability
power of attacks against our models is shown. Transferability
investigation implies the susceptibility of both models to
iFGSM adversarial attack, the strongest attack w.r.t. predictive
performance, is not increased in transferring. For the EXP
model, to have an single-step effective attack, the adversarial
samples require to be crafted in a white-box setting. Still, for
the NN model, the adversarial goal is feasible in both black-
box (transferred) and white-box settings.

Finally, in Table IV, models’ performance regarding non-
stationary abrupt changes, Covid-19 pandemic’s impact on
reported crimes to Chicago Police Department in 2020, is
reported. According to the results, fully neural network model
performs better in modeling crimes, but the exponential hazard

Fig. 3: Adversarial attack’s Macro effect on the fully neural
model (NN) parametric modeling performance. Top: Condi-
tional intensity of real events (Blue), predicted events (Green),
and adversarial events generated by PGD attack (Red), GD
(Gray), and TM (Purple), respectively. Bottom: Enlarged view.
Note that adversarial events’ intensity, λ(t|H), range is far
from the real and predicted events. Here, λ(t|H) of all
other first-order attacks and corresponded predictions have
been presented in ”light gray” as they are tight to PGD.
Additionally, we present λ(t|H) of GD and predicted event
arrivals in the presence of GD in ”Olive”. The same for TM
attack is shown in ”Indigo”.

Fig. 4: Adversarial attack’s Macro effect on the exponential
hazard (EXP) parametric modeling performance.

model is more robust (% of change in MNLL) against non-
stationary abrupt changes, although it’s still sensitive.

VI. CONCLUSION

We have proposed and studied several white-box and black-
box adversarial attacks on two state-of-the-art deep learning
point processes that provide non-parametric modeling of tem-
poral point processes, and investigate the transferability of
proposed adversarial attacks. Adversarial samples creation is a
critical step, especially when the prediction from such models
is utilized in safety and cost-critical applications. Moreover,
we have studied the performance of the models facing non-
stationary abrupt changes such as Covid-19. Finally, we have
examined how Hawkes process’s parameters, are vulnerable to
adversarial attacks. According to experimental results, one can
attack both predictive and parameter-estimation performance
of neural point processes with a small perturbation. Addition-
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Fig. 5: Fooling error (Top) and Symmetric Mean Accuracy
Percentage Error (Bottom) of each attack in the white box
and semi-black-box settings against (left) fully neural model
(NN) and (right) exponential kernel hazard model (EXP).

TABLE IV: The performance of the models on crime predic-
tion in 2019 and 2020. fully neural network hazard function
(Left half), and exponential hazard model (Right half)

Fully neural network Exponential hazard

Data MNLL
(e+00)

MAE
(e+01)

MNLL
(e+00)

MAE
(e+01)

Crimes (2019) 5.08 9.66 5.672 11.06
Crime (2020) 5.44 13.1 5.929 14.62

ally, results imply the models are less sensitive to transferable
attacks, and are not robust to non-stationary changes in the data
such as Covid-19. Exploring defense mechanisms to improve
the models’ robustness is the direction of our future work.
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